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Lecture Notes for Economics 200C: Games and Information
Vincent Crawford, revised March 2000; do not reproduce except for personal use

1. Introduction

MWG 217-233; Kreps 355-384; Varian 259-265; McMillan 3-41
Robert Gibbons, "An Introduction to Applicable Game Theory," Journal of Economic
Perspectives (Winter 1997), 127-149 (or you can substitute his book)

Noncooperative game theory tries to explain outcomes (including cooperation) from the
basic data of the situation, in contrast to cooperative game theory, which assumes
unlimited communication and cooperation and tries to characterize the limits of the set of
possible cooperative agreements. In "parlor" games players often have opposed
preferences; such games are called zero-sum. But noncooperative game theory spans the
entire range of interactive decision problems from pure conflict to pure cooperation
(coordination games); most applications have elements of both.

A game is defined by specifying its structure: the players, the "rules" (the order of players'
decisions, their feasible decisions at each point, and the information they have when
making them); how their decisions jointly determine the outcome of the game; and their
preferences over possible outcomes. Any uncertainty about the outcome is handled by
assigning payoffs (von Neumann-Morgenstern utilities) to the possible outcomes and
assuming that players' preferences over uncertain outcomes can be represented by
expected-payoff maximization.

Assume game is a complete model of the situation; if not, make it one, e.g. by including
decision to participate. Assume numbers of players, decisions, and periods are finite, but
can relax as needed.

Something is mutual knowledge if all players know it, and common knowledge if all know
it, all know that all know it, and so on. Assume common knowledge of structure (allows
uncertainty with commonly known distributions modeled as "moves by nature"): games of
complete information.

Can represent a game by its extensive form or game tree. E.g. contracting by ultimatum
(MWG uses Matching Pennies, Kreps has abstract examples): Two players, R(ow) and
C(olumn); two feasible contracts, X and Y. R proposes X or Y to C, who must either
accept (a) or reject (r). If C accepts, the proposed contract is enforced; if C rejects, the
outcome is a third alternative, Z. R prefers Y to X to Z, and C prefers X to Y to Z. R's
preferences are represented by vN-M utility or payoff function u(y)=2, u(x)=1, u(z)=0; and
C's preferences by v2(x)=2, v2(y)=1, v2(z)=0.

Draw game trees when C can observe R's proposal before deciding whether to accept,
and when C cannot. Order of decision nodes has some flexibility, but must respect timing
of information flows. Players assumed to have perfect recall of their own past moves and
other information; tree must reflect this. Each decision node belongs to an information set,
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the nodes the player whose decision it is cannot distinguish (and at which he must
therefore make the same decision). All nodes in an information set must belong to the
same player and have the set of same feasible decisions. Identify each information set by
circling its nodes (MWG) or connecting them with dotted lines (Kreps).

A static game has a single stage, at which players make simultaneous decisions, as in
contracting with unobservable proposal. A dynamic game has some sequential decisions,
as in contracting with observable proposal. A game of perfect information is one in which a
player making a decision can always observe all previous decisions, so every information
set contains a single decision node, as in contracting with observable proposal. Complete
does not imply perfect information; but if background uncertainty is modeled as "moves by
nature," perfect implies complete information.

A strategy is a complete contingent plan for playing the game, which specifies a feasible
decision for each of a player's decision nodes in the game and possible information states
when he reaches them. (In static games I sometimes say "decision" or "action" instead of
"strategy.") A strategy is like a detailed chess textbook, not like a move. A player's feasible
strategies must be independent of others' strategies (no "wrestle with the other cricket"),
and specifying a strategy for each player determines an outcome (or at least a probability
distribution over possible outcomes) in the game.

In contracting, whether or not C can observe R's proposal, R has two pure strategies,
"(propose) X" and "(propose) Y." If C cannot observe R's proposal, C has two pure
strategies, "a(ccept)" and "r(eject).". If C can observe R's proposal he can make his
decision depend on it, and therefore has four pure strategies, "a (if X proposed), a (if Y
proposed)", "a, r", "r, a", and "r, r."

The above descriptions apply to mixed strategies (randomized choices of pure strategies)
as well as pure (unrandomized) strategies. In games with perfect recall mixed strategies
are equivalent to behavior strategies, probability distributions over pure decisions at each
node (Kuhn's Theorem).

A strategy must be a complete contingent plan (even for nodes ruled out by own prior
decisions!) so that in dynamic games we can evaluate the consequences of alternative
strategies, to formalize the idea that the predicted strategy choice is optimal. This is a
surprising difference from individual decision theory, where zero-probability events can be
ignored. In games we must pay attention to zero-probability outcomes because they are
endogenously determined by players' decisions.

Because strategies are complete contingent plans, players must be thought of as
choosing them simultaneously (without observing others') at the start: theory assumes
rational foresight, so simultaneous choice of strategies is same as decisions in "real time."

A game maps strategy profiles into payoffs; a game form maps profiles into outcomes,
without specifying payoffs. The relationship between strategy profiles, outcomes, and
payoffs is often described by the normal form or the payoff matrix or payoff function.
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In contracting, without and with observable proposals, the payoff matrices are:
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Increasingly game-theoretic examples illustrate some issues that a theory of games
should address (see also abstract, mostly normal-form examples at Kreps 389-392).
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Crusoe versus Crusoe is not really a game, just two individual decision problems; each
player necessarily has best (dominant) strategy, independent of the other's strategy.

In Prisoner's Dilemma, players' decisions affect each other's payoffs, but each player has
dominant strategy. But because of payoff interactions, these individually optimal decisions
yield collectively suboptimal (inefficient, in terms of their preferences alone) outcome.

In Pigs in a (Skinner) Box, Row (R) is a dominant (big) pig and Column (C) a subordinate
(little) pig. There is a lever at one end, which when pushed yields 10 units of grain at the
other end. Pushing costs a pig the equivalent of 2 units of grain. If the big pig pushes while
the little pig waits, the little pig can eat 5 units before the big pig gets there and shoves
him aside. If the little pig pushes while the big pig waits, the little pig cannot push the big
pig aside and the big pig gets all but one unit. If both push, arriving at the grain at the
same time, the little pig gets 3 units and the big pig gets 7 units. If both wait, both get 0.

When behavior settles down in experiments with real pigs, it tends to be at R Push, C
Wait. The little pig (C) does better, even though R can do anything C can do and must
therefore do at least as well in any individual decision problem (or in any zero-sum game)!
Examining the game suggests that this happens because for C, but not for R, Wait
dominates Push, so that only R has an incentive to Push. Evidently, in games weakness
can be an advantage! R would do better if he could commit himself, say by limiting his
ability to shove C aside, to giving C some of the grain if C Pushed. We would like to know
which kinds of games such commitments help in, and what kinds of commitments help.
Understanding this would help in understanding the usefulness of contracts.

Matching Pennies has no good pure strategies, but a unique good way to play using
mixed strategies: shows strategic importance of mixed strategies in conflict situations.

The abstract 3x3 game has a unique profile of pure strategies such that each player's
strategy is best for him, given the other's, but no dominance. (It is easy to show from best-
response cycles that it has no mixed-strategy equilibria.) It shows the need for a way of
analyzing players' strategy choices that takes their interdependence fully into account.

Alphonse and Gaston's problem is that there are two ways to solve their coordination
problem. Each is best for both if both expect the game to played that way, but not
otherwise; and each requires them to behave differently when there are no clues they can
use to distinguish their roles (as they must, to behave in systematically different ways).
This illustrates the nontrivial problems players may face even when their preferences over
outcomes are the same, or nearly the same. We say economics is about coordination, but
the usual analysis assumes coordination by assuming competitive equilibrium (Walrasian
auctioneer). This is okay for some purposes, but leaves us no way to think about the
influence of the environment on coordination; e.g., it's just as easy to imagine a million
people's decisions perfectly coordinated as two people's, so we have little or no theory of
the effect of group size on the efficiency of coordination. Battle of the Sexes complicates
Alphonse and Gaston's problem with different preferences about how to coordinate, but
still no clues about how to break the symmetry as needed for efficient coordination. (The
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problem is clearer if Battle of the Sexes is transposed to Hawk-Dove game, which uses
decision labels that identify strategies that have same meaning in terms of the structure.)
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In Stag Hunt (Rousseau's story, faculty meeting, assembly line) all-Stag is better for all
players than all-Rabbit; but unless all others play Stag, a player does better with Rabbit.
With two or n players, there are two symmetric, Pareto-ranked, pure-strategy equilibria
(and an uninteresting mixed-strategy equilibrium). All-Stag is the "obvious" solution, but
playing Stag is risky because it may not be sufficiently clear that all-Stag is obvious to all,
or sufficiently clear that it is sufficiently clear, etc. Rabbit is safer because its payoff,
although lower than Stag's when all play Stag, is independent of others' decisions. Stag
seems a good bet if there are only a few people, but not if there are ten, or a hundred.
This game poses a different kind of coordination problem, with a tension between the
higher payoffs of all-Stag and its greater fragility. Stag versus Rabbit is like the choice
between participating in a complex and highly productive but fragile society and autarky,
which is less rewarding but also less dependent on coordination.

Problems 7.C.1, 7.D.1-2, and 7.E.1 at MWG 233-234 (all answered in manual); and
problems 3-4 at Kreps 385-386.

2. Games with Simultaneous Moves ("Static Games")
MWG 235-253, 258-261, and 387-400; Kreps 387-417, 437-443, and 551-556; Varian
265-268

Assume common knowledge of structure and players' rationality, in the standard decision-
theoretic sense of choosing strategies that maximize expected payoff given some beliefs
about others' strategies not contradicted by anything he knows and following Bayes' Rule.

Define strictly dominant and dominated strategies. Dominance for pure implies dominance
for mixed strategies, but can have dominance by mixed without dominance by pure
strategies. Define weak dominance. Prisoner's Dilemma, Pigs in a Box, Domination via
Mixed Strategies. Define iterated deletion of strictly dominated strategies ("iterated
dominance"). Independence of order of elimination (proof MWG 262, problem 8.B.4), but
independence doesn't generalize to iterated weak dominance (e.g. Give Me a Break).
Define dominance-solvability, e.g. in 3x3 example above.

Rationalizable strategies survive the iterated removal of strategies that are never a (weak)
best response (MWG 242-243). Close to iterated strict dominance. Order of removal of
never-weak-best-response strategies doesn't matter (MWG 262, problem 8.C.2).

In contracting example, C should accept whether or not C can observe R's proposal, and if
so, whichever contract R proposes. R should therefore propose Y, his most preferred
contract. When R's proposal is unobservable, C's strategy a dominates r; given that, R's
strategy Y dominates X. This leaves Y and a as the only rationalizable strategies.

The set of rationalizable strategies can't be larger than the set that survive iterated strict
dominance, because strictly dominated strategies can never be weak best responses
(can't extend to iterated weak dominance, e.g. Give Me a Break). In two-person games
the two sets are the same because never-weak-best-response strategies are exactly
those that are strictly dominated. Any strategies in Matching Pennies, Battle of the Sexes,
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or 3x3 game with unique pure equilibrium, no dominance is rationalizable. With more than
two persons, the set of rationalizable strategies can be smaller than the set that survives
iterated strict dominance (MWG Exercise 8.C.4 at 245; Brandenburger 87-88).

Rationalizability characterizes implications of common knowledge of structure, rationality:

Theorem: Common knowledge of the structure and rationality implies players will choose
rationalizable strategies, and any profile of rationalizable strategies is consistent with
common knowledge of the structure and rationality. Proof (MWG 243): Illustrate in first
direction for 3x3 dominance-solvable game, second direction by building tower of beliefs
to support corners in 3x3 game with unique pure-strategy equilibrium but no dominance.

There is a link between number of rounds of iterated dominance and of iterated
knowledge of rationality; need common knowledge only for indefinitely large games.

Most important games (and all coordination games) have multiple rationalizable
outcomes, so players must base their decisions on predictions of others' decisions not
dictated by common knowledge of rationality. This prediction is interdependent: "theory of
interdependent decisions." In games with multiple rationalizable outcomes, much of the
theory's power comes from assuming players choose strategies in Nash equilibrium, a
strategy profile for which each player's strategy is a best response to other players'
strategies (a fixed point of the best-response correspondence).

A Nash equilibrium is a kind of "rational expectations" equilibrium, in that if all players
expect the same strategy profile and choose strategies that are best responses given their
beliefs, beliefs will be confirmed iff they are in equilibrium. (Differs from usual rational
expectations in that individuals' decisions are predicted, and players' predictions interact.)

Nash equilibrium is often identified with "rationality," but equilibrium is much stronger than
common knowledge of rationality. Any equilibrium strategy is rationalizable, but
equilibrium also requires players' strategies to be best responses to correct beliefs about
others' strategies (which must then be the same for all), not just some beliefs consistent
with common knowledge of rationality. E.g., belief towers supporting non-equilibrium
strategy profiles in 3x3 game with unique pure-strategy equilibrium but no dominance.

Unlike rationalizability, equilibrium is a property of strategy profiles, relationship between
strategies. "Equilibrium strategy" often refers to any strategy that's part of an equilibrium.

In contracting example when R's proposal is observable, only r, r for C is strictly
dominated. When r, r is eliminated there is no strict dominance, so remaining strategies
are all rationalizable. Common-sense outcome, (Y; a, a), is an equilibrium, but there are
two others, (Y; r, a) and (X; a, r), one with outcome X! In these equilibria C plans to reject
one of R's possible proposals, irrationally, and R's anticipation of this keeps him from
making that proposal, so the irrationality does not reduce the payoff of C's strategy in the
entire game. Such equilibria are said to involve "incredible threats" (misleadingly because
not explicit like a real threat, but implicit in expectations that support equilibrium).
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Theorem: Equivalence of iterated strict dominance and equilibrium in dominance-solvable
games. Not of iterated weak dominance, order of elimination matters, Give Me a Break.

Consistency of iterated strict dominance and equilibrium in non-dominance-solvable
games. Nothing that doesn't survive iterated strict dominance can be in an equilibrium.

An equilibrium can be either in pure or mixed strategies. A mixed strategy profile is an
equilibrium if for each player, his mixed strategy maximizes his expected payoff over all
feasible mixed strategies (MWG Dn. 8.D.2 at 250), e.g. Matching Pennies, where
uncertainty is purely strategic. (Nash's population interpretation, "beliefs" interpretation.)

Theorem: A mixed strategy profile is an equilibrium if and only if for each player, all pure
strategies with positive probability yield the same expected payoff, and all pure strategies
he uses with zero probability yield no higher expected payoff (MWG Prop. 8.D.1 at 250-
251). (Kuhn-Tucker conditions for maximizing expected payoffs linear in probabilities.)

Theorem: Every finite game has a mixed-strategy Nash equilibrium (Prop. 8.D.2 at MWG
252).

Existence of equilibrium may require mixed strategies, in general.

The next theorem gives a more abstract and more general existence result.

Theorem: Every game whose strategy spaces are nonempty, convex, and compact
subsets of Euclidean space, and whose payoff functions are jointly continuous in all
players' strategies and quasiconcave in own strategies has a Nash equilibrium (Prop.
8.D.3 at MWG 253).

Interpret for mixed strategies in finite games, pure strategies in games with continuously
variable pure strategies. Theorem also implies the existence of rationalizable strategies.

Nonuniqueness of equilibrium and refinements. E.g. Give Us a Break, Contracting with
observable proposal, discrete Nash demand game (Kreps 551-556).

A Nash equilibrium is (normal-form) trembling-hand perfect if there is some sequence of
tremble-perturbed games converging to the game for which there is some sequence of
Nash equilibria converging to the equilibrium (Dn. 8.F.1 at MWG 258). E.g. Give Me a
Break, Give Us a Break.

Theorem: A Nash equilibrium is trembling-hand perfect iff there is a sequence of totally
mixed strategies converging to the equilibrium such that each player's equilibrium strategy
is a best response to every element of the sequence (Prop. 8.F.1 at MWG 259).

Theorem: In a trembling-hand perfect equilibrium, no weakly dominated strategy can be
played with positive probability (Prop. 8.F.2 at MWG 259). Any strict equilibrium (define) is
trembling-hand perfect. Any finite game has a trembling-hand perfect equilibrium.
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Selection among strict equilibria: Harsanyi-Selten's General Theory, risk- and payoff-
dominance in two-person and n-person Stag Hunts.

Rationale: Equilibrium is at least a necessary condition for a prediction about behavior in a
game if players are rational and there is to be a unique prediction. But how might players
come to have correct beliefs about how a game will be played? The answer given to this
question separates two leading approaches to noncooperative game theory:

(i) the traditional, deductive approach assumes that players independently deduce correct
beliefs from common knowledge (why common?) of a theory of strategic behavior that
makes a unique prediction for the game in question, like Harsanyi and Selten's General
Theory of Equilibrium Selection; such expectations must yield an equilibrium, given
rationality (proof);

(ii) adaptive learning approach, based on common understanding of previous analogous
games, in which players' strategies adjust over time in response to observed payoffs.

These approaches agree that possible limiting outcomes are something like Nash
equilibria (in the game that is repeated, not the game that describes the entire process);
but they generally differ on convergence and the likelihood of alternative equilibria.

Problems 8.B.1-7, 8.C.1-4, and 8.D.1-9 at MWG 262-266, problems 12.C.1-17 at MWG
430 (answered in manual); and problems 2-3, 14-15, 17-18, and 21 at Kreps 451-462.

3. Games with Sequential Moves ("Dynamic Games")

MWG 267-282, 405-417, and 423-427; Kreps 401-402, 417-449, and 556-565; Varian
273-278

Display Examples 9.C.1 at MWG 283, 9.B.3 at 274, 9.C.4 at 289, 9.C.5 at 290, 9.B.5 at
282, and Figure 9.D.1 at 293.

In dynamic games some useful ideas depend on extensive form. E.g. in contracting with
observable proposal, the common-sense outcome (Y; a, a) is an equilibrium, but there are
two other equilibria, (Y; r, a) and (X; a, r) with "incredible threats," but which survive
iterated strict dominance (cf. "predation game" Example 9.B.1 at MWG 268-269). More
generally, whenever play doesn't reach a given node in an equilibrium, equilibrium doesn't
restrict the decision at that node at all.

Sequential rationality and time-consistency of "solution concept" (on and off equilibrium
path, unlike decision-theoretic notion). Relation to iterated weak dominance, equilibrium in
un-weakly dominated strategies, in contracting example (cf. Example 9.B.2 at MWG 271).
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Zermelo's Theorem (Proposition 9.B.1 at MWG 272-273): Backward induction, existence,
and (if no ties) uniqueness of sequentially rational strategies in finite games of perfect
information.

Extension of sequential rationality/backward induction to finite games of imperfect
information via plugging in payoffs of equilibria in subgames and folding back, e.g.
predation game with simultaneous choices following entry but unique equilibrium
(Example 9.B.3 at MWG 273-274).

A subgame is a subset of a game that starts with an information set with a single node,
contains all and only that node's successors in the tree, and contains all or none of the
nodes in each information set (Definition 9.B.1 at MWG 274). A subgame-perfect
equilibrium is a strategy profile that induces an equilibrium in every subgame (MWG 275,
Dn. 9.B.2).

Theorem (Proposition 9.B.2 at MWG 276, generalizes Zermelo's Theorem, proof the
same): Existence of pure-strategy subgame-perfect equilibrium, and (if no ties)
uniqueness of subgame-perfect equilibrium in finite games of perfect information.
Existence of subgame-perfect equilibrium in games of imperfect or incomplete information
(Example 9.B.3 at MWG 273-274).

Trembling-hand perfect equilibria are subgame-perfect, but not vice versa.

Theorem (Proposition 9.B.3 at MWG 277-278): Characterization of subgame-perfect
equilibria via backward induction.

Theorem (Proposition 9.B.4 at MWG 279-280): Equivalence of subgame-perfect
equilibrium to concatenated equilibria of period games in finite-horizon games (even with
imperfect information) with unique equilibria and immediate observability of pure strategies
each period, payoffs summed over periods. Illustrate proof in finitely repeated Prisoner's
Dilemma.

Theorem (Proposition 9.B.9 at MWG 302): With multiple period equilibria or infinite
horizon can get nonconcatenated subgame-perfect equilibria.

Subgame perfect equilibrium as inadequate formalization of sequential rationality,
Example 9.C.1 at MWG 282-283 (one choice by first mover leads to two-node information
set, no subgames).

A system of beliefs is a probability distribution over nodes, which gives the relative
likelihoods of being at each node in an information set, conditional on having reached it
(Dn. 9.C.1 at MWG 283).
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A strategy profile is sequentially rational at an information set if no player can do better,
given his beliefs about what has happened so far, by changing his strategy (Dn. 9.C.2 at
MWG 284). Generalizes above notion of sequential rationality to games like Example
9.C.1 at MWG 282-283.

A strategy profile and system of beliefs is a weak perfect Bayesian equilibrium if the
strategy profile is sequentially rational given the beliefs, and the beliefs are derived from
the strategy profile using Bayes' Rule whenever possible (Dn. 9.C.3 at MWG 285,
Example 9.C.1 at MWG 282-283). ("Weak" because completely agnostic about zero-
probability updating.)

Theorem (Proposition 9.C.1 at MWG 285-286): A strategy profile is an equilibrium in an
extensive form game if and only if there exists a system of beliefs such that the profile is
sequentially rational given the beliefs at all information sets that have positive probability
of being reached by the profile, and beliefs are derived from profile using Bayes' Rule
whenever possible.

A strategy profile and system of beliefs is a sequential equilibrium if the profile is
sequentially rational given the beliefs, and there exists a sequence of completely mixed
strategies converging to the profile, such that the beliefs are the limit of beliefs derived
using Bayes' Rule from the totally mixed strategies (Dn. 9.C.4 at MWG 290). Strengthens
weak perfect Bayesian by requiring more consistency of zero-probability beliefs, adding
equilibrium play off equilibrium path. Closely related to perfect Bayesian equilibrium,
defined at MWG 452.

A sequential equilibrium is (trivially) a weak perfect Bayesian equilibrium, but not vice
versa.

Theorem (Proposition 9.C.2 at MWG 291, Example 9.C.1 at MWG 282-283): A sequential
equilibrium is subgame-perfect, but not vice versa.

Centipede Game and critique of sequential rationality (MWG 281-282, Kreps 401-402).

More refinements:

Forward induction, relation to iterated weak dominance, e.g. in Battle of the Sexes with
outside option; ambiguity of notion in general (MWG 292-296, Figure 9.D.1 at 293).
Powerful, tricky.

Extensive-form trembling-hand perfect equilibrium as trembling-hand perfect equilibrium in
agent normal form (Dn. 9.BB.1 at MWG 299-301).
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Analysis of time-sequenced strategy choices with and without observability, irreversibility:
without observability, order of moves doesn't alter feasible strategies, payoffs, normal
form, or (subgame-perfect) equilibrium outcomes. Without irreversibility (or costly
reversibility, in which case decision to incur costs is irreversible) a similar conclusion
holds. In particular, announcement with no direct payoff effect ("cheap talk") of "intention"
to choose a strategy has no effect, although it could focus beliefs on a particular
subgame-perfect equilibrium in Alphonse-Gaston or Stag Hunt.
Importance of separating assumptions about structure and behavior. Different "solution
concepts" as same behavioral assumptions in different games, e.g. Stackelberg, Cournot,
and Bertrand.

Theorem (Proposition 12.C.1 at MWG 388): Bertrand duopoly with constant returns to
scale, perfectly substitutable goods: Simultaneous price choices by firms yields
competitive outcome as unique equilibrium. No calculus despite continuously variable
strategies because of discontinuities.

Theorem (Proposition 12.C.2 and Example 12.C.1 at MWG 390-392): Cournot duopoly
with constant returns to scale, perfectly substitutable goods: Simultaneous quantity
choices by firms yields equilibrium (not necessarily unique) with prices between
competitive and monopoly prices.
Equilibrium via calculus at last!

Cournot outcome approaches competitive outcome as number of firms grows (MWG 391-
394, Kreps 443-449).

Stackelberg leadership as subgame-perfect equilibrium with sequenced quantity choices
by firms.

Capacity constraints and product differentiation (refer to MWG 394-400). Kreps-
Scheinkman and importance of timing of irreversible decisions.

Simultaneous entry decisions followed by Bertrand or Cournot competition (refer to MWG
405-411).

Strategic precommitments, strategic complements and substitutes, direct and indirect
effects of investment decisions (MWG 414-417).

Three views of entry deterrence: irreversible decisions that affect future interactions,
repeated games (Section 4), informational (Section 5).

Dixit and Spence entry deterrence and accommodation models (MWG 423-427).

Problems 9.B.1-11 and 14 at MWG 301-305, problem 12.BB.1 at MWG 427, problem
12.C.18 at MWG 433, problems 12.E.1-7 and 12.F.1-4 at MWG 434-435; and problems
1, 4, 16, and 20-21 at Kreps 451-462
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4. Infinite Horizon and Repeated Games

MWG 296-299, 400-405, and 417-423; Kreps (better on this topic) 503-515, 524-526, and
551-565; Varian 269-271

A. Complete information alternating-offers bargaining models

Two players bargain via alternating offers over v dollars. (Relation between discount
factors and discount rates.) Player 1 (chosen arbitrarily) begins in period 1 with a
continuously variable offer between 0 and v. If player 2 accepts he gets the offered
amount and player 1 gets what's left of v (assumes none of the money is wasted, but can
relax). If player 2 rejects and there are any periods remaining, player 2 makes a
counteroffer in period 2, and so on. The value of any agreement is discounted by a
common (can relax) discount factor 0 ≤ δ ≤ 1, so delay is costly.

Ultimatum Game (one-period version of alternating-offers bargaining): unique subgame-
perfect equilibrium in which player 1 ("proposer") makes a proposal in which he gets all of
the surplus and player 2 ("responder") accepts (despite indifference). Leader gets all of
the surplus, therefore has incentive to structure his proposal to maximize it so the
outcome is efficient (Edgeworth Box).

Reinterpretation of this equilibrium as limit of (risk-dominant) subgame-perfect equilibria
without indifference in discrete-offer version (still have equilibrium with indifference too).
Ultimatum Game often generalized to allow nontrivial structuring of proposals and used as
model of bargaining over contracts. Graphical analysis of subgame-perfect equilibrium in
utility-possibility set with downward-sloping frontier (link to underlying game).

Probably okay for most purposes, but use with care because predictions don't do well
when Ultimatum Game is played in laboratory (Responders get upset enough to reject low
but positive offers; Proposers anticipate this, and respond by offering much more than
nothing).

Pareto-efficiency of subgame-perfect equilibrium outcome. "Noncooperative" contracting
game yields "cooperative" equilibrium outcome, in this case because in equilibrium the
Proposer gets all of the surplus from an agreement, and therefore has an incentive to
propose an agreement that maximizes it. Model explains Pareto-efficiency of outcome
rather than just assuming it. Typical of literature on incentives and mechanism design.

Finite-horizon alternating-offers bargaining (I. Stahl): unique subgame-perfect equilibrium
in which player 1 makes a proposal in which he gets all of the surplus from reaching an
agreement immediately, relative to an agreement delayed by one period, and player 2
accepts (again despite indifference). Two-period example with v = 1, δ = ¾.

Subgame-perfect equilibrium outcome is again Pareto-efficient, because player 1 again
has an incentive to make a proposal that maximizes the surplus (though trivial structuring
of proposals in the simple model trivializes this issue) and there's no delay in equilibrium.
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Surplus-sharing is entirely determined by delay costs, with first-mover advantage for
player 1 when there is an odd number of periods (even though the choice of first-mover
was arbitrary). First-mover advantage goes away as δ approaches 1 and the horizon
approaches infinity. In the limit, with equal discount factors, surplus-sharing approaches
equal split (with a general, convex utility-possibility set, approaches the Nash bargaining
solution, which generalizes equal-split to such sets).

Predictions again don't do well when alternating-offers bargaining games are played in
laboratory, partly because Responders get upset as in Ultimatum Game, and partly
because the longer the horizon the more complex the backward induction/iterated
dominance argument required to identify the subgame-perfect equilibrium, and real people
don't believe that others will follow it.

Infinite horizon version (reinterpretation as potentially infinite horizon, with conditional
probabilities of continuation bounded above zero and perhaps discounting too; Rubinstein
a982 EMT; MWG 296-299, Kreps 556-565): unique subgame-perfect equilibrium in which
player 1 makes a proposal in which he gets all of the surplus from reaching an agreement
immediately, relative to an agreement delayed by one period (anticipating subgame-
perfect equilibrium in subgame following rejection), and player 2 accepts (again despite
indifference). Sketch proof.

Subgame-perfect equilibrium outcome is Pareto-efficient, for same reasons, equals limit of
finite-horizon subgame-perfect equilibria as horizon approaches infinity.

Surplus-sharing still entirely determined by delay costs, with first-mover advantage for
player 1. As δ approaches 1 the first-mover advantage goes away, and with equal
discount factors approaches equal split (or Nash (1950 EMT) bargaining solution in more
general games).

Game has a continuum of Nash equilibria without subgame-perfectness. Perfectness has
force here because of the way it interacts with the alternating-offers rules and delay costs.

By far most popular bargaining model, but result doesn't generalize to n players, discrete
offers, incomplete information, almost-common knowledge of rationality (Kreps 552-565;
Kreps, Game Theory and Economic Modelling); and doesn't do well in experiments.

Alternatives:

With no delay cost, fixed horizon, and fixed pattern of alternating offers, the last mover
gets all of the surplus, in effect becoming the Proposer in an Ultimatum Game by
unilaterally forcing delay (Kreps 551-556).

When strategic uncertainty and risk of coordination failure are more important than delay
costs, there's a fixed horizon, but there is no fixed pattern of alternating offers ("lock 'em in
a room" bargaining), the analysis is very different. Nash's (1953 EMT) demand game with
strategies viewed as the least surplus each player can be induced to accept. Role of
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expectations, culture, focal points, strategic moves in determining bargaining outcomes.
Nash's axiomatic (1950 EMT) solution.

B. Complete-information repeated games

Define repeated game as dynamic game in which same stage game is played over and
over again by same players. Stage game could be anything, even another repeated game.

Repeated Prisoner's Dilemma (location of apostrophe, methodological individualism).
Canonical (but overworked, and not entirely representative) model of using repeated
interaction to overcome short-run incentive problems that work against efficiency.

With finite horizon (however large) "Defect-Defect no matter what" is unique subgame-
perfect equilibrium. No cooperation on equilibrium path in any equilibrium (Kreps 514).

With infinite horizon and a sufficiently high discount factor, trigger strategies ("Cooperate
till other guy Defects, then Defect forever") support cooperation on equilibrium path. Okay,
but not perfect. Modified trigger strategies ("Cooperate till either of us Defects, then Defect
forever") support cooperation as subgame-perfect equilibrium. "Implicit contract." No true
altruism, just "reciprocal altruism" supported as subgame-perfect equilibrium with purely
self-interested behavior.

Subgame-perfectness is important here because without it, players wouldn't want to carry
out the punishments, and their anticipations of this would render planned punishments
ineffective. Even with subgame-perfectness there's a potential problem with renegotiation
because punishments are inefficient. Renegotiation-proofness kills possibility of
supporting cooperation in repeated Prisoner's Dilemma, limits it elsewhere.

Cooperate Defect

Cooperat
e

3

3

5

0

Defect
0

5

1

1
With these payoffs, players can support repeated Cooperate-Cooperate in subgame-
perfect equilibrium using above modified trigger strategies (or any strategies) if and only if
3(1 + δ + δ2 +…) = 3/(1 - δ) ≥ 5 + 1(δ + δ2 +…) = 5 + δ/(1 - δ) if and only if δ ≥ ½.

When δ ≤ ½, the future is not important enough for threats of future defection to support
cooperation, and only repeated Defect-Defect is consistent with subgame-perfect
equilibrium (or equilibrium). The limit of ½ is dependent on the magnitudes of the payoffs
in the example, but fact that higher values of δ never hurt is general.
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In the infinite-horizon repeated Prisoner's Dilemma, there are also many asymmetric
subgame-perfect equilibria. Example (Kreps 507): Implicit contract is Row alternates
between Cooperate and Defect and Column always Cooperates. This continues until
either deviates, in which case both Defect from then on. Column does worse, and threat is
symmetric, so supporting Column's strategy as part of a subgame-perfect equilibrium is
unambiguously harder than supporting Row's strategy. In the hypothesized equilibrium
Column gets 3 + 0δ + 3δ2 +… = 3/(1 – δ2) ≥ 5 + 1(δ + δ2 +…) = 5 + δ/(1 - δ) if and only if δ
≥ 0.59 (approximately), so the asymmetric implicit contract is consistent with subgame-
perfect equilibrium as long as δ ≥ 0.59. The limit is higher than for the symmetric implicit
contract because the asymmetry makes it harder to keep both players willing to stay with
the contract when the alternative is a symmetric punishment.

A general feature of infinite-horizon repeated games is an enormous multiplicity of
equilibria, multiplicity both of equilibrium outcomes and the threats that can be used to
support them (which in this noiseless version of the game never need to be carried out on
the equilibrium path).

The perfect symmetry of the repeated Prisoner's Dilemma makes it seem easy to choose
an equilibrium to represent its implications. However, even here the symmetric Pareto-
efficient outcome is supported by threats to totally destroy the relationship if anything goes
wrong. This need for near-perfect coordination of strategy choices makes the implicit
contract very fragile. (And often players only get to play the game once, so learning
justifications for equilibrium may not be available.) More "forgiving" strategies are less
effective in deterring cheating. In real environments there is a tension between efficiency
and fragility, which is not yet at all well understood.

We've seen one symmetric and one asymmetric efficient equilibrium of the repeated
Prisoner's Dilemma. It would be useful to know, more generally, what kinds of implicit
contracts can be supported as subgame-perfect equilibria in repeated games. Define
minimax (not maximin) payoff: minimum over others' strategies of maximum of own payoff
over own strategy given others' strategies. E.g. Prisoner's Dilemma, Bertrand, Cournot,
and Stackelberg duopoly.

Folk Theorem: In an infinitely repeated game with complete information and observable
strategies, for any feasible pair of payoffs strictly greater than those that follow from
repeating players' minimax payoffs in the stage game, there is a discount factor such that
for all greater discount factors, those payoffs arise in a subgame-perfect equilibrium of the
repeated game (Prop. 12.AA.5 at MWG 422, stated in terms of average payoffs, Example
12.AA.1; Kreps 508-509).

Easy to prove as in Prisoner's Dilemma for Nash reversion. Harder for minimax. Temporal
convexification with high discount factors.

Application to oligopoly (real meaning of reaction function is kind of strategy in repeated
oligopoly, conceptually (not mathematically) distinct from best-response function).
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Theorem (Proposition 12.D.1 at MWG 401; implicit collusion in infinitely repeated
Bertrand duopoly): With a sufficiently high discount factor, the monopoly price can be
supported as a subgame-perfect equilibrium outcome in an infinitely repeated Bertrand
duopoly by threats to revert forever to the competitive price if anyone deviates.

Theorem (Proposition 12.D.2 at MWG 403; Folk Theorem in infinitely repeated Bertrand
duopoly): With a sufficiently high discount factor, any price from the competitive to the
monopoly price can be supported as a subgame-perfect equilibrium outcome in an
infinitely repeated Bertrand duopoly by threats to revert forever to the competitive price if
anyone deviates. For low discount factors, only the competitive price can be supported.
Large number of firms in Bertrand model shrinks set of implicit agreements supportable
via Folk Theorem by making limit on δ more stringent (MWG 405).

Implicit collusion in Cournot model (Kreps 524-526). Example12.AA.1 at MWG 422-423:
Supporting zero payoffs in infinitely repeated Cournot duopoly (strategies yield zero-profit
quantities followed forever by monopoly output until someone deviates).

Intellectual problems: Folk Theorem sets are independent, except perhaps for boundaries,
of institutional structure, so theory provides little or no guide to modeling its effects. E.g.
there's little difference in the Folk Theorem sets for repeated Cournot, Bertrand, and
Stackelberg games (since each firm can unilaterally "blow" up the market by enforcing a
zero price; note that definition of minimax payoff doesn't impose equilibrium or subgame-
perfectness), and the Folk Theorem set for repeated Stackelberg is independent of which
firm is the leader. Can't do comparative statics without theory of equilibrium selection.

Reputation in infinitely repeated interactions for product quality (one-sided Prisoner's
Dilemma (Kreps 531-534)).

Entry deterrence with long-lived incumbent and short-lived entrants (Kreps 535).

Green and Porter (1984 EMT) and noise in implicit contracts (Kreps 515-523, 526-529);
need to punish bad outcomes even though cheating never occurs in equilibrium. Effect of
noise in limiting benefits of collusion, moderating optimal severity and/or duration of
punishments.

Problems 9.B.12-13 at MWG 303, problems 12.D.1-5 and 12.AA2 at MWG 433-435;
and problem 1 at Kreps 546-547



19

5. Games of Incomplete ("Asymmetric") Information

MWG 253-257 and 282-296; Kreps 425-437 and 463-489; Varian 279-282

Harsanyi's move by Nature trick and the generality of describing informational differences
in games of incomplete information by types that parameterize preferences, drawn from
common knowledge joint distribution (no need for beliefs about beliefs, etc.). Harsanyi
doctrine/common prior assumption: any differences in players' beliefs can be viewed as
derived from Bayesian updating of a common prior within a common model.

Strategy in game of incomplete information as complete type-contingent plan. Players
need to make conjectures about alternative types, even their own and even though only
one type is realized per player.

A pure-strategy Bayesian Nash equilibrium is a profile of decision rules (mapping each of
each player's possible types into a strategy) that are in equilibrium in the game of
complete information that arises before Nature chooses their types (Dn. 8.E.1 at MWG
255).

A profile of decision rules is a Bayesian Nash equilibrium if and only if for all types that
have positive prior probability, a player's decision rule maximizes his expected payoff
given his type, where the expectation is taken over other players' types conditional on his
own type (Prop. 8.E.1 at MWG 255-256).

Thus, ex ante/complete information view of a game of incomplete information is equivalent
to the interim/incomplete information view, in which players choose strategies after
observing their types.

Recall definitions of beliefs, sequential rationality, weak perfect Bayesian equilibrium, and
sequential equilibrium (MWG 282-296, Kreps 425-437).

Contracting example with Proposer's (R's) preferences u(y)=2, u(x)=1, u(z)=0, two types
of Responder, C1 with probability p and C2 with probability (1-p), with C1's preferences
v1(x)=2, v1(z)=1, v1(y)=0 and C2's preferences v2(x)=2, v2(y)=1, v2(z)=0, so C1 won't accept
y, R's favorite contract, and there is a tension between R's preferences and the probability
of acceptance. Only C observes his type, but p and the rest of the structure are common
knowledge. R's pure strategies are x and y, but C's now map his type and R's proposal
into an accept or reject decisions, so he has 2x2x2x2=16 pure strategies, 4 chosen
independently for each type. Draw extensive form with move by Nature first, then two
decision nodes for R in the same information set, then 4 decision nodes for C, each in its
own information set. There is a unique (unless p = ½) weak perfect Bayesian equilibrium,
in which R proposes y if p<½, x if p>½, and either if p=½; C1 accepts x but rejects y; and
C2 accepts x and y. Analysis easy because the only privately informed player has passive
role.
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Matching Pennies with random, independent payoff perturbations. Purification of mixed-
strategy equilibrium by continuously distributed private information (MWG 257, Kreps
410).

Ultimatum Game with privately observed, continuously distributed outside option payoff. R
proposes a division x for R, 1-x for C, and C accepts or rejects. If C accepts, R and C get
payoffs x and 1-x. If C rejects, R gets payoff 0 and C gets payoff y with c.d.f. F(y), where
F(0)=0, F(1)=1, and F(·) is continuously differentiable with positive density everywhere in
between (e.g. uniform, with F(y)≡y when yє[0,1]). Any proposal risks rejection, with
probability increasing in x. For most F(·) there is an essentially unique weak perfect
Bayesian equilibrium, in which C accepts iff 1-x ≥ y (≥ rather than > without essential loss
of generality, because the event 1-x = y has zero probability) and R proposes x*, 1-x*,
where x* solves maxx xF(1-x). (When F(y)≡y, x*=½.) For some F(·) this problem has
multiple solutions, in which case weak perfect Bayesian equilibrium is essentially
nonunique. Analysis is again easy because the only privately informed player has a
passive role.

Milgrom and Roberts' (1982 EMT) model of entry deterrence (Kreps 463-480, Figure 13.2
at 473). Two expected-profit maximizing firms, Incumbent and potential Entrant, choose
Quantities, perfect substitutes, I in both of two periods, E only in second period. I has two
possible unit costs, constant across periods, which only it observes: $3 with probability ρ
and $1 with probability 1- ρ. E's unit cost is certain to be $3. Both have fixed costs of $3. ρ
and the rest of the structure are common knowledge. In the first period, I observes its unit
cost c and chooses Q, which determines P = 9 - Q. In the second period, E observes the
first-period P and chooses whether or not to enter. If E enters, I and E are Cournot
competitors in second period, taking into account whatever information is revealed in
equilibrium by I's first-period P; if not, I is a monopolist in second period.

The analysis is hard because privately informed I plays an active role. I's first-period
actions can signal its type to E, and in equilibrium both I and E must weigh the indirect,
informational payoff implications of I's first-period decisions against their direct effects.

First analyze the Cournot subgame following entry, given E's beliefs (Kreps 475). If E
assesses that c= 3 has probability µ, the Cournot equilibrium is QE = 2(2+µ)/3, QI|(c =1) =
(10- µ)/3, QI|(c =3) = (7- µ)/3, with πE = 4(2+µ)2/9, not including its fixed cost of 3. Thus E
enters iff 4(2+µ)2/9 > 3, or µ > 0.598. E.g., if E knows c = 3, I and E each set Qi = 2 and
get πi = 1 (=4-3), so it's profitable to enter. If E knows c = 1, I sets QI = 10/3 and E sets QE
= 4/3 and gets πE = -11/9, so it's not profitable to enter.

Now consider I's first-period decision. The first-period monopoly optimum is Q = 4, P = 5,
π = 13 if c = 1; Q = 3, P = 6, π = 6 if c = 3. However, there is no weak perfect Bayesian
equilibrium in which each type of I chooses its monopoly optimum in the first period. In
such an equilibrium, E could infer I's type by observing P, and would enter if P = 6,
thinking that c = 3. But then the high-cost type of I would get π = 6 in the first period and π
= 1 in the second, less over the two periods than the π = 5 and π = 6 it could get (in the
hypothesized equilibrium) by switching to P = 5 and thereby preventing E from entering.
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The conclusion that there is no equilibrium of this kind does not depend on zero-
probability inferences, and therefore holds for any stronger notion as well as weak perfect
Bayesian equilibrium. Only one type needs to want to defect to break the equilibrium, and
this is enough to invalidate it as a prediction even if that type is not realized. (Why?)

Now consider whether there can be a weak perfect Bayesian pooling equilibrium, in which
both types of I charge the same price with probability one, and are therefore not
distinguishable in equilibrium? (Looking for each possible kind of equilibrium is a
characteristic form of analysis.)

If ρ < 0.598, there is a sequential (and weak perfect Bayesian) equilibrium in which: (i)
each type of I sets P = 5 in the first period; (ii) E sticks with its prior ρ < 0.598 and
therefore stays out if P ≤ 5 (in any weak perfect Bayesian pooling equilibrium, E must stick
with its prior on the equilibrium path); (iii) E infers that I's costs are high and enters if P >
5; and (iv) entry leads to the Cournot equilibrium with E believing (as common knowledge)
that I's costs are high. In this pooling equilibrium, the high-cost I successfully "hides
behind" the low-cost I by giving up some profit in the first period to mimic the low-cost I,
and both types of I successfully forestall entry.

To see that these strategies and beliefs are consistent with sequential equilibrium, note
that: (i) E's strategy is sequentially rational, given its beliefs; (ii) the beliefs are consistent
with Bayes' Rule on the equilibrium path; (iii) when c = 1, I charges its favorite first-period
price and prevents entry, the best of all possible worlds; and (iv) when c = 3, the only way
I could do better is by raising P above 5, but this would cause E to enter and thereby lower
total profits. (Assuming the most pessimistic conjectures about consequences of
deviations from equilibrium is a characteristic form of analysis, and yields largest possible
set of weak perfect Bayesian equilibria.) Note that the beliefs also satisfy a natural
monotonicity restriction, in that a higher P never lowers E's estimate that I's costs are high.

If ρ > 0.598, there is no weak perfect Bayesian pooling equilibrium. Such an equilibrium
would always lead to entry, making the high-cost I unwilling to charge other than its first-
period optimal monopoly price. The low-cost I would prefer a different price, even if it didn't
prevent entry.

However, if ρ > 0.598 (or for any ρ) there is a separating (screening, sorting) sequential
(hence weak perfect Bayesian) equilibrium in which: (i) the high-cost I charges its optimal
monopoly price, 6, in the first period; (ii) the low-cost I charges 3.76 in the first period; (iii)
E infers that costs are high if P>3.76 and therefore enters; (iv) E infers that costs are low if
P≤3.76 and therefore stays out; (v) both types of I charge their monopoly price in the
second period if there is no entry; and (vi) entry leads to the Cournot equilibrium with E
believing (as common knowledge) that I's costs are high. In this separating equilibrium,
the low-cost I successfully distinguishes itself from the high-cost I by distorting its first-
period price enough to prevent the high-cost I from mimicking it. Entry occurs exactly
when it would with complete information, and the only effect of incomplete information is
the distortion of the low-cost I's first-period price, which benefits consumers and hurts the
low-cost I. That the presence of alternative "bad" types hurts "good" types is typical.
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To see that these strategies and beliefs are consistent with sequential equilibrium, note
that: (i) E's strategy is again sequentially rational, given the hypothesized beliefs; (ii) the
beliefs are (trivially) consistent with Bayes' Rule on the equilibrium path (and again
monotonic); (iii) the low-cost I would like to set P>3.76 in the first-period, but that would
lead to entry and reduce total profits (easy to check); and (iv) the high-cost I gets π=6 in
the first period and π=1 following entry in the second, just above what it would get by
setting P≤3.76 and forestalling entry (3.76 was chosen to make it just too costly for the
high-cost I to mimic the low-cost I in this equilibrium). These arguments don't depend on ρ,
so this profile is a weak perfect Bayesian equilibrium for any ρ.

Irrationality in finitely repeated Prisoner's Dilemma (summarize, refer to Kreps 480-489,
536-543).

Problems 8.E.1-3 at MWG 265, problems 9.C.1, 3-4, and 7 at MWG 304-305; and
problems 17-18 at Kreps 457 and 2-4 at Kreps 498-501.

6. Adverse Selection MWG 436-448; Kreps 625-629; Varian 466-469
George Akerlof, "The Market for 'Lemons': Quality Uncertainty and the Market
Mechanism," Quarterly Journal of Economics (August 1970); reading 15 in DR

Informational asymmetries and adverse selection in competitive labor market with many
identical, risk-neutral, expected profit-maximizing firms, many workers with privately
observed ability θ (= output) distributed on a compact interval with c.d.f. F(θ) and
reservation ("home") wage r(θ). Full-information, efficient benchmark outcome has each
worker working iff r(θ)≤θ, each paid his θ. Inefficient equilibrium with r(θ)≡r: Equilibrium
wage w*=Eθ for those who accept. If w≥r all workers accept employment; if w<r none do;
which occurs determined by proportions of high- and low-ability workers. If too many low-
productivity workers, firms unwilling to pay wage that any workers will accept, and there is
too little employment; if too many high-productivity workers, firms pay wage that all accept,
and there is too much employment in equilibrium. Asymmetric information prevents market
from allocating workers efficiently between work and home.

When r(θ) varies with θ, can get market failure via adverse selection (informed agents'
decisions hurt uninformed agents). Suppose r(θ)<θ for all θ, so that all workers "should"
work; that r(θ) is strictly increasing; and that there is a density of abilities θ. Then at any
given wage, only the less able workers (those with r(θ)≤w) will work, so that higher wage
rates raise the average productivity of those who accept employment. The equilibrium
wage w*=E[θ| r(θ)≤w*]. w* must be r(θ) for the highest θ to get the best workers to work,
but in Figure 13.B.1 at MWG 441 firms can't break even at this level. Thus the best
workers don't work in equilibrium, the equilibrium is inefficient, and the equilibrium wage
equals the average productivity of those who do work.
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In cases like Figure 13.B.2 (left) at MWG 442, adverse selection causes complete market
failure: no one works, even though all "should." Equilibrium can be unique as in Figure
13.B.1 or multiple and Pareto-ranked as in Figure 13.B.2 (right), with the high-wage
equilibrium better for all workers and no worse for firms, who all earn zero profits in any
equilibrium ("coordination failure").

In a two-stage game where firms first simultaneously choose wages and workers then
choose among firms, when there is a density of abilities θ, the highest-wage competitive
equilibrium is the unique subgame-perfect equilibrium (unless w*=r(θ) for the lowest θ, in
which case there can be multiple subgame-perfect equilibria, but all pure-strategy
subgame-perfect equilibria yield workers the same payoffs as the highest-wage
competitive equilibrium). Firms break lower-wage equilibria by raising wage and attracting
higher-productivity workers (Proposition 13.B.1 at MWG 443-444).

Can use notion of (incentive-)constrained Pareto-efficient allocation to ask if the market
does as well as possible, given limited information, and think about welfare effects of
market intervention by planner who faces the same informational limitations as agents in
the market. Planner must pay the same wage to all employed workers, and possibly
different wage to all unemployed workers. He can implement the competitive outcome by
setting w=w*, and can enforce the highest-wage equilibrium. But he can do no better than
that in this model because the high-wage equilibrium is constrained Pareto-efficient
(Proposition 13.B.2 at MWG 447-448; the proof shows that any change from w* hurts
either low- or high-ability workers, and also addresses boundary issues).

Problems 13.B.1-9 at MWG 473-474 and problem 1 at Kreps 654.

7. Signaling and Screening

MWG 450-467; Kreps 629-652; Varian 469-471
Michael Spence, "Job Market Signalling," Quarterly Journal of Economics (August 1973);
reading 18 in DR
Michael Rothschild and Joseph Stiglitz, "Equilibrium in Competitive Insurance Markets: An
Essay on the Economics of Imperfect Information," Quarterly Journal of Economics
(November 1976); reading 17 in DR

Given inefficiency of competitive outcomes with asymmetric information, agents may
consider various tactics to improve outcome (not that the agents care about efficiency, but
inefficiency gives them opportunity to change the outcome). We consider two tactics,
signaling (actions by informed agents to distinguish types) and screening (such actions by
uninformed agents), which can be individually advantageous responses to asymmetric
information, but need not increase efficiency. (Sorting, separating, and pooling tend to
refer to equilibrium outcomes, while signaling and screening tend to refer to agents'
actions.) I discuss both in a labor market example, following MWG 450-467 (and Kreps
629-637 and 645-649), though the original screening analyses of Stiglitz (monopoly) and
Rothschild-Stiglitz (competition) were in an insurance market.
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Spence's signaling model (MWG 450-460, Kreps 629-637; MWG assume unproductive
education and Kreps assumes productive education, but the difference is inessential; I
follow MWG): Two firms, one worker (can generalize). Market structure as in Section 6,
but worker now has only two ability "types," with productivities θH>θL>0, where
0<Prob{θ=θH}=λ<1. Only workers observe their types, but everyone knows λ, as common
knowledge. r(θH)=r(θL)=0, so the unique equilibrium when workers can't signal has all
workers employed at wage w*=Eθ and is Pareto-efficient. But workers can now choose
education level e, continuously variable within a bounded interval, with differentiable and
uniformly higher marginal ("single crossing property") and total costs for θL. Education has
no effect on productivity (can relax). Although firms cannot directly observe ability, they
can observe education levels, which in equilibrium might indirectly signal workers' abilities
to firms because of the different costs of education for high- and low-ability workers.

The "rules" are as follows (Figure 13.C.1 at MWG 451 gives extensive form): (i) nature
chooses the worker's type θ; (ii) worker observes type and chooses education level e; (iii)
firms observe e and simultaneously make wage offers wi; (iv) worker observes wi and
chooses between firms.

Add to weak perfect Bayesian equilibrium the condition that for all e (not just those chosen
in equilibrium), both firms use a common posterior µ(e) to update their beliefs about the
worker's ability and to predict each other's equilibrium wi from the equilibrium offer
functions. This added consistency of beliefs and strategies off the equilibrium path yields
perfect Bayesian equilibrium (PBE), equivalent here to sequential equilibrium. A set of
strategies and beliefs µ(e) is a PBE iff:

(i) the worker's strategy is optimal given the firms' strategies;

(ii) µ(e) is derived from the worker's strategy using Bayes' Rule whenever possible; and

(iii) the firms' wage offers following each possible e are in Nash equilibrium in the
simultaneous-move wage offer game when the probability that the worker is of high ability
is µ(e).

Just as in Bertrand duopoly, if the firms observe e and have beliefs µ(e), their unique
equilibrium offers are both µ(e)θH + (1- µ(e))θL; the worker picks either of them, it doesn't
matter which.

Lemma 13.C.1 at MWG 453: In any separating PBE, each worker type is paid its
productivity.

Lemma 13.C.2 at MWG 454: In any separating PBE, a low-ability worker sets e = 0
(special to unproductive education, of course). Proof: e > 0 costs more, can't help because
worker is separated.
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Figures 13.C.5-6 at MWG 454-455 show separating PBEs with different supporting wage
functions w*(e), each derived from common beliefs (hence between dotted lines). A high-
ability worker chooses ê, the lowest e that a low-ability worker won't wish to imitate. Firms
and workers behave optimally on and off equilibrium path: firms bid correctly and
consistently for each e, and each worker type has a generalized tangency between its
indifference curve and (w,e) opportunity locus.

Figure 13.C.7 at MWG 455 shows a separating PBE in which high-ability worker chooses
e higher than ê, the minimum needed to separate from low-ability worker; its e can go all
the way up to the e1 that makes high-ability worker willing to mimic low-ability worker.
These separating equilibria are Pareto-ranked; lowest-e is best. Low-ability workers do
worse than when education is impossible. High-ability workers can do better or worse
(Figure 13.C.8 at MWG 456; can do worse because can't duplicate no-education outcome,
in which they were pooled with low-ability workers, and the education needed to separate
is costly). The set of separating equilibria is independent of λ.

Figures 13.C.9-10 at MWG 457 show limits of pooling PBEs, with e anything from 0 to e',
the level of e that makes low-ability worker indifferent between being identified as low-
ability at e = 0 and being pooled at e = e'. Firms and workers both behave optimally on
and off equilibrium path: firms because they bid correctly and consistently for each e, and
worker types because each has a generalized tangency between its indifference curve
and (w,e) opportunity locus. Pooling equilibria are again Pareto-ranked, with the e = 0 one
best for both worker types and the firms not caring. All pooling equilibria are weakly
Pareto-dominated by the no-education-is-possible equilibrium.

Figure 13.C.7 illustrates the use of equilibrium refinements to break separating equilibria
in which high-ability worker chooses e higher than ê. An e between ê and e1 is equilibrium-
dominated for the low-ability type, in that it is dominated if we assume equilibrium beliefs
and bids by firms. This kind of argument, which goes beyond sequential equilibrium (and
monotonicity, etc.) to restrict out-of-equilibrium beliefs, is called in its simplest form the
intuitive criterion. In this model one can use such arguments to rule out separating
equilibria with high-ability workers setting e "too high" and all pooling equilibria (Figures
13.C.9-10). The result is a unique prediction of the outcome, that of the separating
equilibria with different beliefs in Figures 13.C.5-6. This outcome may not be constrained
Pareto-efficient. If the no-signaling equilibrium Pareto-dominates the separating
equilibrium, banning signaling is a Pareto-improvement. If not, market intervention by
setting separate wages for workers with e above and below a properly chosen cutoff
(Figure 13.C.11 at MWG 458) may still allow a Pareto-improvement by making both
worker types better off while allowing firms to break even by cross-subsidization (losing on
low-ability workers but gaining on high-ability workers). In more realistic models,
educational signaling can improve matching between workers and jobs and/or enhance
productivity. However, the desire to separate can still lead to excessive education relative
to what would be optimal with observable ability.
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Rothschild-Stiglitz competitive screening model in the labor-market example (MWG 460-
467, Kreps 638-645 and 649-650; the Stiglitz monopoly screening model is a special case
of the agency models in Section 8, discussed at MWG 500-501 and Kreps 661-680):

Market structure is almost the same as in Section 7: Two firms, but many workers
(inessential). Workers have two ability "types" with productivities θH>θL>0, where
0<Prob{θ=θH}=λ<1. r(θH)=r(θL)=0. Only workers observe their types, but λ is common
knowledge. Workers no longer choose education, but firms can offer contracts with
different "task levels" (e.g. hours) to induce workers to reveal their types by their choice of
contract. Task level has no effect on productivity (can relax). A type-θ worker with wage w
and task level t≥0 has utility u(w,t|θ)=w-c(t,θ), where c(0,θ)=0, ct(t,θ)>0, ctt(t,θ)>0, cθ(t,θ)<0
for all t >0, and ctθ(t,θ)<0 ("single crossing property").

The "rules" are as follows: (i) nature chooses the workers' types, θ; (ii) firms
simultaneously offer sets of (any desired finite number of, but two is enough) contracts,
each of which is a pair (w,t); (iii) workers observe their types and each type chooses one
of the offered contracts or no contract (assume for simplicity that workers who are
indifferent between contracts choose the one with lower t, workers who are indifferent
between a contract and no contract choose the contract, and workers whose most
preferred contract is offered by both firms choose each with probability ½).

Study pure-strategy subgame-perfect Nash equilibria (SPNE) throughout. Suppose first
that workers' types are observable, so firms can condition offers on a worker's type,
offering a contract (wL,tL) restricted to low-ability workers and a contract (wH,tH) restricted
to high-ability workers.

Proposition 13.D.1 at MWG 461-462 (Figure 13.D.1): In any SPNE of the game with
observable worker types, a worker of type θi accepts contract (wi

*,ti*)=(θi,0), and firms earn
zero profits. Proof: Firms gain by replacing inefficient contracts with ti>0 by ti=0, and
competition drives wi up to θi.

Now suppose that workers' types are unobservable, so that any offered contract can be
accepted by a worker of either type. The full-information outcome of Proposition 13.D.1 is
no longer attainable, because low-ability workers prefer the high-ability contract to the low-
ability contract, and they can no longer be prevented from accepting it. We will look for
pooling or separating equilibria.

Lemma 13.D.1 at MWG 462-463: In any equilibrium, pooling or separating, both firms earn
zero profits. Proof: If (wL,tL) and (wH,tH) are the contracts chosen by low- and high-ability
workers, respectively, and firms have positive total profits π, at least one firm must make
profit≤π/2. Such a firm can attract all low-ability workers by offering (wL+ε,tL) and all high-
ability workers by offering (wH+ε,tH) for some small ε>0. Since ε can be as small as
desired, that firm can gets profits as close as desired to π, and therefore has a profitable
deviation unless π≤0. But π can't be negative because firms aren’t required to offer any
contracts, so in equilibrium π=0.
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Lemma 13.D.2 at MWG 463: No pooling equilibria exist. Proof: If there is a pooling
equilibrium contract (wp,tp), by Lemma 13.D.1 it lies on the pooled break-even (0-profit)
line in Figure 13.D.3 at MWG 463. Then either firm can gain by deviating to a contract in
the shaded lens with w< θH, which attracts all high-ability workers and no low-ability
workers and thus yields positive profits.

Lemma 13.D.3 at MWG 463: If (wL,tL) and (wH,tH) are contracts chosen by low- and high-
ability workers in a separating equilibrium, then wL=θL and wH=θH so both yield zero
profits. Proof: If wL<θL either firm could get positive profits by offering only a contract with
w a little above wL, which all low-ability workers would accept, and which would be
profitable for both low- and high-ability workers. This contradicts Lemma 13.D.1, so wL≥θL
in any separating equilibrium. If wH<θH as in Figure 13.D.4 at MWG 463, then (wL,tL) must
lie in the lens in Figure 13.D.4 above the wL=θL line as shown, by self-selection and
Lemma 13.D.1 (0 profits). But then either firm could get positive profits by deviating to a
contract in the upper lens below wH=θH line, like (w~,t~) in Figure 13.D.4, which would
attract all high-ability workers. Thus wH≥θH in any separating equilibrium. Since firms break
even in any equilibrium by Lemma 13.D.1, in fact wL=θL and wH=θH.

Lemma 13.D.4 at MWG 464: In any separating equilibrium, low-ability workers accept
(θL,0), the same contract they would receive in a full-information competitive equilibrium.
Proof: By Lemma 13.D.3, wL=θL in any separating equilibrium. If tL>0 in such an
equilibrium, a firm could do better by offering a contract with lower wL and tL, attracting all
low-ability workers as in Figure 13.D.5.

Lemma 13.D.5 at MWG 464: In any separating equilibrium, high-ability workers accept
(θH,tH^), where tH^ is chosen so low-ability workers are indifferent between (θL,0) and
(θH,tH^) as in Figure 13.D.6 at MWG 464, so that θH–c(tH^, θL)=θL–c(0, θL). Proof: By
Lemmata 13.D.3-4, wH=θH and (wL,tL)=(θL,0). For low-ability workers to accept (θL,0), tH≥tH^

in Figure 13.D.6. If the high-ability contract (θH,tH) has tH>tH^ as in Figure 13.D.6, then
either firm can get positive profits by offering an additional contract with lower wH and tH as
shown in Figure 13.D.6, which attracts all of the high-ability workers and does not change
the choices of low-ability workers. Thus, in any separating equilibrium, the high-ability
contract must be (θH,tH^).

Proposition 13.D.2: In any subgame-perfect equilibrium of the screening game, low-ability
workers accept contract (θL,0) and high-ability workers accept contract (θH,tH^) in Figure
13.D.6, where θH–c(tH^, θL)=θL–c(0, θL).

Proposition 13.D.2 tells what a separating equilibrium must look like if one exists, but does
not tell us that such an equilibrium exists. Consider the candidates for a separating
equilibrium in Figures 13.D.7(a-b). By construction, for any λ, neither firm can gain from
deviating in a way that attracts either all high- or all low-ability workers. However, varying λ
allows us to move Eθ anywhere between θH and θL without affecting the candidate
separating equilibrium. And in Figure 13.D.7(b) (but not (a)), Eθ is high enough that a firm
can gain by deviating to a contract such as (w~,t~) that attracts all workers to a single
pooling contract. In this case, since no pooling equilibrium ever exists, no equilibrium of
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any kind exists (in pure strategies; equilibrium does exist in mixed strategies, but the
interpretation of mixed-strategy equilibria in this model is problematic).

As in the signaling model's best separating equilibrium, screening equilibria are Pareto-
inefficient, and low-ability workers are worse off than when screening is impossible.
However, when a screening equilibrium exists it must make high-ability workers better off
(whenever screening would hurt high-ability workers, a pooling contract breaks the
screening equilibrium candidate). When they exist, screening equilibria are (with a
qualification) constrained Pareto-efficient.

Problems 13.C.1-6 and 13.D.1-4 at MWG 474-476; and problems 2-5, 7-10 at Kreps
654-660

8. Agency

MWG 477-506; Kreps 577-614 and 661-674; Varian 441-466; McMillan 91-129
Oliver Hart and Bengt Holmstrom, "The Theory of Contracts," in Truman Bewley, editor,
Advances in Economic Theory, Fifth World Congress, Cambridge 1987

Consider a relationship between two people: a principal (sometimes called "owner" in
MWG) who could benefit from delegating a decision that affects his welfare to an agent
(sometimes called "manager" in MWG) who has relevant skills or private information. The
agent has different preferences over decisions than the principal would if he were fully
informed, and the principal cannot control the agent's decisions (because he cannot
observe them, or for other, unmodeled, reasons). But the principal can design a contract
or incentive scheme to influence agent's decisions.

Distinction between hidden actions/moral hazard (e.g. fire prevention, manager's effort
choice that influences owner's profit, borrower's investment decisions that influence
lender's return on loan) and hidden information/adverse selection (e.g. insurer unable to
observe consumer's risk class). Distinction is independent of signaling-screening
distinction. Applications often have some of both. Analytically similar in that in each case
the principal cannot observe the agent's decision rule.

Hidden-action analysis: Agent chooses one-dimensional effort level e from set E, which is
costly to the agent. e influences the principal's profit π. Principal wishes to maximize Eπ
net of what he pays agent, but cannot observe (or directly control) e. If relationship
between e and π were deterministic, invertible, principal could infer e from π, and thereby
control e; so assume π has a conditional density f(π|e)>0 for all eεE and all πε[π ,π¯],
making any value of π consistent with any value of e.

Special case with two effort levels, eH and eL: f(π|eH) first-order stochastically dominates
f(π|eL) (i.e. F(π|eH)≤F(π|eL)) for all πε[π ,π¯], with strict inequality for nonnegligible set of
π's. EF(π|eH)π> EF(π|eL)π, so principal prefers agent to choose eH, other things equal. Agent
chooses eε{eH,eL} to maximize E[v(w)-g(e)], w is wage, v(·) strictly increasing and weakly
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concave so agent risk-averse in income, and g(eH)>g(eL) so agent dislikes effort. Principal
is risk-neutral and maximizes E[π-w].

Ultimatum model of contracting process (standard in principal-agent literature): Principal
proposes contract to agent, which agent can accept or reject. Acceptance yields binding
contract, rejection yields agent reservation utility u, a proxy for agent's best alternative in
the market, assumed exogenous. Assume subgame-perfect equilibrium (SPNE)
throughout.

Proposition 14.B.1 at MWG 480-481: When the agent's effort is observable, an optimal
(uniquely when v(·) is strictly concave) contract for the principal specifies that the agent
choose the effort e* that solves maxeε{eH,eL} [EF(π|e)π – v-1(u+g(e))] and pays the agent a
fixed wage w*= v-1(u+g(e*)).

Proof: When the agent's effort is observable, a contract specifies agent's effort eε{eH,eL}
and wage w(π). The principal's problem is maxeε{eH,eL},w(π) EF(π|e)[π–w(π)] s.t.
EF(π|e)v(w(π))–g(e)≥u (participation or individual rationality constraint). First consider the
best w(π) given e, which solves minw(π)EF(π|e) w(π) s.t. EF(π|e)v(w(π))–g(e)≥u. Constraint
always binding, with Lagrange multiplier γ and first-order condition γ = 1/v'(w(π)) for all π.
Given e, if v(·) is strictly concave this implies that w(π)=w*(e) for all π, and if v(·) is weakly
concave w(π)=w*(e) is still one optimum. (The best way for a risk-neutral principal to get a
risk-averse agent up to utility level u is for the principal to bear all the risk.) Thus v(w*(e))–
g(e)=u, so w*(e)=v-1(u+g(e)), with w*(e) increasing in e. Given w*(e)=v-1(u+g(e)), the best
e, e*, solves maxeε{eH,eL} [EF(π|e)π – v-1(u+g(e))].

Proposition 14.B.2 at MWG 482-483: When the agent's effort is unobservable but the
agent is risk-neutral, the optimal contract leads to the same effort and expected utilities for
principal and agent as when effort is observable.

Proof: Suppose the principal sets w(π)≡π–α for some constant α ("selling the project (for
α) to the agent"). The agent then chooses e to solve maxeε{eH,eL}[EF(π|e)w(π)–g(e)]
=EF(π|e)π–α–g(e). When v(w)≡w, v-1(w)≡w, so this problem has the same solution e* that
solves maxeε{eH,eL} [EF(π|e)π –  v-1(u+g(e))] in Proposition 14.B.1 (the maximands differ by a
constant). Setting α=α* where EF(π|e*)π–α*–g(e*)=u satisfies the agent's participation
constraint and yields the principal utility α*=EF(π|e*)π–g(e*)–u, the same as his utility in the
optimal contract with observable effort in Proposition 14.B.1. The optimal contract with
unobservable effort could not possibly improve on this.

When the agent's effort is unobservable and the agent is risk-averse, there is a tension
between efficient risk-sharing and providing efficient incentives for the agent that makes
the problem nontrivial. E.g. perfect fire insurance dilutes incentives to take care against
fire. Optimal contract is a second-best compromise.
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Proposition 14.B.3 at MWG 483-488: When the agent's effort is unobservable, the agent is
risk-averse, and there are two possible effort choices, the optimal compensation scheme
for implementing eH satisfies 1/v'(w(π)) = γ + µ[1 – f(π|eL)/f(π|eH)], gives the agent
expected utility u, and involves a larger Ew* than when effort is observable. The optimal
compensation scheme for implementing eL involves the same fixed w as if e were
observable.

Whenever the optimal effort with observable e would be eH, the nonobservability of e
causes a welfare loss: Either it is still optimal to implement eH, in which case the agent
faces avoidable risk which the principal must compensate him for (the agent still gets u);
or it is now too expensive to implement eH, and the principal implements eL even though
eH would allow a Pareto-improvement. (The fact that unobservable e makes incentive
constraints bind and distorts effort downward may not be true for more than two effort
levels (MWG 502-504, Exercise 14.B.4 at MWG 507).)

Proof: When e is unobservable the principal's optimal contract specifies a wage w(π). The
best w(π) given e solves minw(π)EF(π|e)w(π) s.t. (i) EF(π|e)v(w(π))–g(e)≥u (participation or
individual rationality constraint) and (ii) e solves maxe'EF(π|e')v(w(π))–g(e') (incentive
compatibility constraint).

If it is desired to implement eL, it is optimal for the principal to offer a fixed wage payment
w*(eL) =v-1(u+g(eL)), as if he were specifying eL when effort is observable. This makes
agent choose eL, because effort doesn't affect w and he prefers eL, other things equal, and
yields agent u just as when effort is observable. Optimal contract with unobservable effort
could not possibly improve on this.

If it is desired to implement eH, constraint (ii) becomes EF(π|eH)v(w(π))–g(eH) ≥
EF(π|eL)v(w(π))–g(eL). Again letting γ≥0 and µ≥0 be the Lagrange multipliers on constraints
(i) and (ii) respectively, w(π) must satisfy the following first-order condition for all π:
-f(π|eH) + γv'(w(π))f(π|eH) + µ[f(π|eH) –f(π|eL)]v'(w(π)) = 0, or 1/v'(w(π)) = γ + µ[1 –
f(π|eL)/f(π|eH)].

When e=eH, both constraints bind, because the agent would like to set e=eL:

Lemma 14.B.1 at MWG 484: In any solution to the principal's problem with e = eH, γ>0 and
µ>0.

Proof: Because f(π|eH) first-order stochastically dominates f(π|eL), there must be an open
set of π throughout which f(π|eL)/f(π|eH)>1. But if γ=0 and µ≥0, this contradicts the first-
order condition. And if µ=0, the first-order condition implies a fixed wage payment, which
implements eL, not eH.
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Given this, this first-order condition says that the agent gets a "base payment" (in utility)
that is independent of π plus a "bonus" that is higher to the extent that π is evidence (in
the sense of the likelihood ratio f(π|eL)/f(π|eH)) that he chose eH. This evidence affects the
bonus not because the principal doubts that the agent chose eH; in equilibrium, the
principal knows this. Paying the agent partly according to the evidence that he chose eH is
just the cheapest way to get him to choose eH.

We can also use the first-order condition to ask if w(π) must be increasing. Surprisingly,
this is not true without further restrictions on f(·), because even when f(π|eH) first-order
stochastically dominates f(π|eL), f(π|eL)/f(π|eH) need not be decreasing in π. The
monotone likelihood ratio property says that f(π|eL)/f(π|eH) is decreasing in π, so that
higher π is evidence in favor of eH (Fig. 14.B.1, MWG 485-486, and Kreps 494-495 give
examples to show why this property is necessary).

One can also use the first-order condition to prove the Mirrlees-Holmstrom Sufficient
Statistic Theorem (MWG 487-488): If (and only if) π is a sufficient statistic for the agent's
choice of e, there is no gain to allowing w to depend on any other available indirect
measure of e.

The first-order condition shows that the optimal incentive scheme is generally highly
nonlinear and sensitive to the details of the environment, including the distribution f(·). By
contrast, real-world incentive schemes (e.g. sharecropping), tend to be simple and robust
to environmental details. Why this is true is still largely an open question; MWG 488
discuss a possible explanation. Inefficiency makes devices like monitoring and cross-
checking useful. MWG 488 discuss extensions to multiple agents with relative
performance evaluation (tournaments), long-term relationships, competition for agents
among multiple principals, and multidimensional effort.

Refer to MWG 504 and Kreps 604-608 on the "first-order approach" (different from above
use of first-order condition) as imperfect alternative to min w(π) given e when e is
continuously variable. Two problems: failure of second-order conditions and
discontinuities of e* in w(π).

Hidden-information analysis (MWG 488-501): Almost the same model as for hidden
actions, but now the agent chooses eε[0,∞), e is observable, and the agent's cost of effort
is unobservable. The principal's gross profit (net of wage payments) is π(e), with π(0)=0,
π'(e)>0, and π"(e)<0 for all e. The agent's reservation utility is u, and the agent's vN-M
utility function is u(w,e,θ)≡v(w-g(e,θ)) where v"(·)<0, so the agent is risk averse in income.
g(·) measures the cost of effort, with g(0,θ)≡0 for all θ and, for all e>0, ge(·)>0, gee(·)>0,
gθ(·)<0, and geθ(·)<0 (the "single-crossing property"), so that e has positive and increasing
marginal cost, and both are decreasing in θ. Focus here on the special case with two
possible θs, θH and θL, with commonly known probabilities λε(0,1) and 1-λ.
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Ultimatum contracting: Principal proposes a contract, which agent can accept or reject.
Acceptance yields binding contract, rejection yields agent reservation utility u, a proxy for
his best alternative in the market, assumed exogenous. Assume subgame-perfect Nash
equilibrium (SPNE) throughout.

Consider first the benchmark case where θ is observable, so that the principal can specify
the effort level ei and wage wi contingent on each realization of θ, θi. In the two-outcome
case the contract specifies two wage-effort pairs, (wH,eH) and (wL ,eL), and the principal
chooses these to solve

max (wH,eH)≥0, (wL ,eL) ≥0 λ[π(eH)-wH] + (1-λ)[π(eL)-wL]

s.t. λv(wH-g(eH,θH)) + (1-λ)v(wL-g(eL,θL))≥u

Proposition 14.C.1 at MWG 492: When θ is observable, the optimal contract for the
principal involves an effort level ei* in state θi such that π'(ei*)=ge(ei*,θi), and fully insures
the agent, setting the wage in each state θi at the level wi* such that v(wi*-g(ei*,θi))=u.
Proof: The participation constraint must bind at the solution, because otherwise the
principal could increase his profit by lowering wages. Letting γ≥0 be the multiplier on this
constraint, we have the first-order conditions:

(14.C.2)                                           -λ + γλv'(wH*-g(eH*,θH))=0

(14.C.3)                                      -(1-λ) + γ(1-λ)v'(wL*-g(eL*,θL))=0

(14.C.4)                  λπ'(eH*) - γλv'(wH*-g(eH*,θH))ge(eH*,θH)≤0, and =0 if eH*>0

(14.C.5)            (1-λ)π'(eL*) - γ(1-λ)v'(wL*-g(eL*,θL))ge(eL*,θL)≤0, and =0 if eL*>0

Combining (14.C.2) and (14.C.3) yields the standard condition for efficient insurance of a
risk-averse party (the agent) by a risk-neutral party (the principal).

(14.C.6)                                 v'(wH*-g(eH*,θH)) = v'(wL*-g(eL*,θL)).

Because v"(·)<0, (14.C.6) implies that wH*-g(eH*,θH))=wL*-g(eL*,θL) and v(wH*-g(eH*,θH))=
v(wL*-g(eL*,θL)), and because the participation constraint is binding, the agent has utility u
in each state. Because ge(0,θ)=0 and π'(0)>0, (14.C.4) and (14.C.5) must both hold with
equality and with eH*>0 and eL*>0. Combining (14.C.2) and (14.C.4) and (14.C.3) and
(14.C.5) yields

(14.C.7)                                              π'(ei*)=ge(ei*,θi), i=L,H,

the condition for efficient effort choice, requiring that the marginal benefit of effort equals
its marginal (utility) cost in each state (Figure 14.C.1 at MWG 491). The principal’s profit in
state i is

Πi*= π(ei*) – v-1(u) - g(ei*,θi), i=L,H.
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From (14.C.7), geθ(e,θ)<0, π"(e)<0, and gee(e,θ)>0 imply eH*>eL* (Figure 14.C.2 at MWG
492). This completes the proof, showing that when θ is observable, a risk-neutral principal
fully insures a risk-averse agent and specifies fully efficient effort for each realization of
the state θi.

When θ is unobservable, the principal's optimal contract must balance the provision of
insurance for the agent against the need to give the agent incentives to make e vary
appropriately with θ. (e is observable but θ is unobservable, so the relationship between e
and θ is unobservable.) The first-best outcome of Proposition 14.C.1 is no longer
attainable, because the agent always prefers (wL*,eL*) to (wH*,eH*) (Figure 14.C.2). Thus if
the agent is asked to report θ (directly, or indirectly by his choice of effort) he will always
report θ=θL, and the principal will not realize the first-best outcome. In characterizing the
optimal contract in this case, we must consider the agent's incentives to misrepreesent θ
and how this affects the outcome. The task is simplified by the following general result,
which shows that, in a sense, there is no loss of generality in restricting attention to
contracts in which the agent is asked to report θ (a direct revelation mechanism), and for
which truthful reporting is consistent with equilibrium (so the mechanism is incentive-
compatible).

Proposition 14.C.2 at MWG 493 (Revelation Principle): In determining the optimal
contract, the principal can without loss of generality restrict attention to contracts in which:
(i) after the agent observes θ, he is required to report it; (ii) the contract specifies an
outcome for each possible report; and (iii) for every possible realization of θ, the agent
finds it optimal to report θ truthfully. Proof: Given a particular selection among any multiple
equilibria that exist in the game following a set of contract proposals by the principal, one
can collapse any contract that creates an incentive for the agent to lie into an equivalent
contract that specifies the outcome that lying yields in equilibrium.

Now consider the case where θ is unobservable, under the simplifying assumption that the
agent is infinitely risk averse (maximin or limit of finite risk aversion). Write the principal's
problem as

 max (wH,eH)≥0, (wL ,eL)≥0 λ[π(eH)-wH] + (1-λ)[π(eL)-wL] s.t.

(i)            wL-g(eL,θL) ≥ v-1(u) ("participation" or "individual rationality" constraint for θL)

(ii)           wH-g(eH,θH) ≥ v-1(u) ("participation" or "individual rationality" constraint for θH)

(iii)    wH-g(eH,θH) ≥ wL-g(eL,θH) ("incentive-compatibility" or "self-selection" constraint for
θH)

(iv)    wL-g(eL,θL) ≥ wH-g(eH,θL) ("incentive-compatibility" or "self-selection" constraint for
θL),
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where (wL,eL) and (wH,eH) are now interpreted as what happens when the agent
announces θL or θH. (There is no loss of generality here, by the Revelation Principle.) The
participation/individual rationality constraints are given for the "interim" case where the
agent observes his type before contracting, but with an infinitely risk averse agent this
formulation applies equally well to the "ex ante" case where the agent signs the contract
before observing his type. The interim case is often more relevant, and in other models
may have different implications than the ex ante case.

Lemma 14.C.1 at MWG 495 (Figure 14.C.3 at MWG 495): Constraint (ii) is never binding,
and can be ignored. Proof: From (i) and (iii), wH-g(eH,θH) ≥ wL-g(eL,θH) ≥ (because
g(eL,θH)≤g(eL,θL)) wL-g(eL,θL)≥v-1(u). (Intuition: If Low agents are happy to sign up, High
agents must be even happier.)

Lemma 14.C.2 at MWG 495-496: An optimal contract must have wL-g(eL,θL) = v-1(u), so
constraint (i) is binding. Proof: Otherwise the principal could reduce both wH and wL by
ε>0, preserving incentive-compatibility and increasing profits. (Intuition: Since High agents
are always happier than Low agents, and the principal can screw both in a balanced way
that does not interfere with incentive-compatibility, it is optimal for the principal to screw
Low agents to the wall (u).)

Lemma 14.C.3 at MWG 496-497: In any optimal contract: (i) eL≤eL*; and (ii) eH=eH* (eL*
and eH* are from the optimal contract with observable θ). Proof (Figures 14.C.4-6 at MWG
496-497):

(i): By Lemma 14.C.2 and incentive-compatibility, (wL,eL) must be on upper boundary of
shaded region in Figure 14.C.4. If eL≥eL*, the principal can increase profit by sliding (wL,eL)
down the agent's u indifference curve to (wL*,eL*) in Figure 14.C.5, leaving both Low and
High agents' utilities unchanged and continuing to satisfy the incentive-compatibility
constraints.

(ii): Given (wL^,eL^) with eL≤eL* as in Figure 14.C.6, the principal must find the (wH,eH) in
the shaded region in Figure 14.C.6 that maximizes his profit in state θH. The solution
occurs at a tangency like that at (wH~,eH*) in the figure, with eH=eH* because the only
binding constraint that involves both eH and θH is (iii), the incentive-compatibility constraint
for the High agent.

The fact that only the incentive-compatibility constraint for the High agent is binding is
common to such analyses. (With more than two types, this property generalizes to: only
incentive-compatibility constraints for adjacent types bind, and they only bind in the
"downward" direction.)
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Lemma 14.C.4 at MWG 497-498 (also see Appendix B at MWG 504-506): In any optimal
contract, eL<eL*. Proof: Start with (wL,eL)= (wL*,eL*) as in Figure 14.C.7 at MWG 497,
which by Lemma 14.C.3 determines the state θH outcome, (wH~,eH*) in the figure.
Principal's overall expected profit with (wL,eL)= (wL*,eL*) is a (λ, 1-λ)-weighted average of
his profits in states θH and θL, which can be read off the vertical axis in the figure (because
π(0)=0, the principal's profit = -w). Sliding (wL,eL) a small amount down the Low agent's
indifference curve, to (wL^,eL^) in Figure 14.C.8(a) at MWG 498 (note typo in label of
(wL^,eL^)) yields a zeroth-order reduction in profit in state θL, because it involves a small
change in (wL,eL) away from the first-best (wL*,eL*) in that state (Envelope Theorem).
However, it relaxes the incentive-compatibility constraint in state θH and thereby allows the
principal to lower wH by a first-order amount (Figure 14.C.8(b)). On balance, this increases
the principal's profit. The more likely is θH, the more the principal is willing to distort the θL
outcome to get higher profits in θH. (Follows from Kuhn-Tucker conditions; see MWG App.
B at 504-506.)

Proposition 14.C.3 at MWG 499-500: To sum up, in the hidden-information principal-agent
model with an infinitely risk-averse agent, the optimal contract sets eH=eH* and eL<eL*, and
the agent is inefficiently insured, getting utility > u in state θH and utility u in state θL. The
principal's expected profit is lower than when θ is observable, while the infinitely risk-
averse agent's utility is the same.

The conclusions would be the same if π were not publicly observable, in which case we
could allow θ to affect the relationship between π and e (replacing π(e) by πL(e) and
πH(e)). We couldn't do this if π were observable, because then the principal could infer θ
from π and the specified e.

Stiglitz's (1977 Review of Economic Studies) analysis of monopolistic screening with
adverse selection is just like this, except that the principal's profit depends directly on the
agent's private information (MWG 500-501). Although this makes little difference, it is
instructive to give Stiglitz's analysis, without assuming an infinitely risk-averse agent. Here
I follow Kreps 661-674.

Basic model (Figure 18.3 at Kreps 665): Risk-neutral, expected-profit maximizing insurer
(principal), risk-averse consumer (agent) with probability πi that endowment will be Y2 and
probability 1- πi that endowment will be Y1, i=H,L, where πH>πL. Ultimatum contracting as
before.

Graphing consumer's indifference curve in (y1,y2)-space, slope = -(1-π)/π along 45˚ line in
Figure 18.3. Risk-neutral insurer's indifference curves are linear with slope -(1-π)/π.
Efficient insurance thus involves tangency on the 45˚ line, so risk-averse consumer is
perfectly insured. Y2<Y1, so Y2 is the "accident" outcome and the consumer's endowment
(Y1,Y2) is below the 45˚ line. Thus, optimal monopolistic contract when insurer knows πi is
on the 45˚ line where it intersects the consumer's indifference curve through his
endowment (Figure 18.3 at Kreps 665). (Competition with known πi would also yield a
contract on the 45˚ line, but drive insurers' expected profits to 0.)
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When insurer doesn't know πi but does know prior, ρ, that i=H, would like to use the full-
information-optimal monopolistic contracts just derived. But because low-risk consumer
cares less about y2, his indifference curves are uniformly steeper in (y1,y2)-space than a
high-risk consumer's (Figure 18.2 at Kreps 664). The optimal monopolistic contract for
low-risk consumers will then look better for high- as well as low-risk consumers, so the
insurer won't get the anticipated level of profit by offering the full-information-optimal
monopolistic contracts.

When πi is unknown, we can characterize the optimal contracts as follows. No loss of
generality in restricting insurer to two contracts (two=number of consumer types), one
designed for high-risk consumers and one for low-risk consumers, imposing incentive
compatibility constraints to ensure that consumers select the right contracts, given their
types. Given this, the insurer solves:

max (y1H,y2H), (y1L y2L) ρ[(1-πH)(Y1- y1
H) + πH (Y2 - y2

H)] + (1-ρ) [(1-πL)(Y1- y1
L) + πL(Y2 - y2

L)]
s.t.

(1-πH)u(y1
H) + πH u(y2

H) ≥ (1-πH)u(Y1) + πH u(Y2)   (participation constraint for H)

(1-πH)u(y1
H) + πH u(y2

H) ≥ (1-πH)u(y1
L) + πH u(y2

L)   (incentive compatibility constraint for
H)

(1-πL)u(y1
L) + πL u(y2

L) ≥ (1-πL)u(Y1) + πL u(Y2)   (participation constraint for L)

(1-πL)u(y1
L) + πL u(y2

L) ≥ (1-πL)u(y1
H) + πL u(y2

H)   (incentive compatibility constraint for L)

Proposition 1 at Kreps 670: At the solution, the participation constraint for L and the
incentive compatibility constraint for H are binding, and the high-risk contract (y1

H,y2
H) has

full insurance, with y1
H=y2

H. Sketch of proof (see Kreps 670-674 for details): (i) The
participation constraint for L binds, because you can't have both participation constraints
slack, and the one for L binds before the one for H, "because" low-risk consumers need
insurance less than high-risk consumers (Figure 18.5(b) at Kreps 671). (ii) The incentive
compatibility constraint for H binds, "because" first-best contracts would make high-risk
consumers want the low-risk contract. (iii) Thus, the solution of the principal's problem is
as in Figure 18.6 at Kreps 674. Just where it lies on the 45˚ line depends on ρ: If ρ is near
1 (0), it will be near (or maybe at) the ideal contract for high-(low-)risk consumers.

Problems 14.B.1-8 at MWG 507-508 and 14.C.1-9 at MWG 508-510; and problems 1-2
and 4-7 at Kreps 616-623
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9. Incentives and Mechanism Design

MWG 857-910; Kreps 661-703; McMillan 133-159

Principal-agent analysis is leading case of mechanism design, foundation for all that
follows:

Analyses of public goods provision and public projects, quasilinear preferences and the
pivot mechanism (MWG 861-862, 876-880; Kreps 704-712)

Allocation of indivisible goods (MWG 862-864)

Optimal auctions and revenue equivalence (MWG 865-866, 889-891)

Bilateral exchange and the Myerson-Satterthwaite Theorem (MWG 894-910, Kreps 680-
703)

Dominant strategy and Bayesian implementation of social choice rules (MWG 857-897)

Problems at MWG 918-925; and problems 1-5 at Kreps 715-717


