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集合与映射(JR，pp.387-435) 

凸集 
开球、闭球 
开集、闭集 
分离超平面(MWG p.1346) 
有界集 
紧集 
 
连续性 
(柯西)连续性 
D 中的开集 
D 中的闭集 
连续性及其逆象 
 
数列 
收敛的数列 
有界的数列 
子数列 
 
威尔斯拉斯定理 
布劳威不动点定理 



 
实值函数 
递增的、严格递增与强递增函数 
递减的、严格递减与强递减函数 
水平集 
上优集与下劣集 
 
凹函数 
严格凹函数 
拟凹函数 
严格拟凹函数 
凸与拟凸函数 
凸与严格凸函数 
 

微积分(JR,pp.436-483) 

链式运算法则 
凹性与一和二阶导数 
方向导数 
梯度 
海赛矩阵 
杨格定理 
 
齐次函数 
齐次函数的偏导数 
欧拉定理 
 
隐函数定理(BS p.490) 
泰勒定理(BS p.491) 

静态最优化(JR, pp.436-483) 

实值函数局部内点最优化的一阶必要条件 
实值函数局部内点最优化的二阶必要条件 
海赛矩阵负定与正定的充分条件 
实值函数局部内点最优化的充分条件 
(无约束的)局部与全局最优化 
严格凹性/凸性与全局最优化的惟一性 
惟一全局最优化的充分条件 
 
约束最优化 
拉格朗日方法 



拉格朗日定理 
 
加边海赛矩阵 
两变量、一约束最优化问题中的一个局部最优化的充分条件 
等式约束条件下的局部最优化的充分条件 
不等式约束 
受非负性条件约束的实值函数最优化的必要条件 
 
非线性规则问题 
库恩-塔克条件 
受不等式条件约束的实值最优化的(库恩-塔克)必要条件 
 
值函数 
包络定理 
 

微分方程(BS,pp.438-466) 

微分方程 
 一阶线性微分方程 
 二阶线性微分方程 
微分方程的稳定性 
 一阶线性微分方程的稳定性 
 线性微分方程系统的稳定性 
 非线性微分方程系统的稳定性 

动态优化 

最优控制原理(BS, pp.466-487; KD, pp.130-144) 
 典型问题 
 极大值原理 
 横截性条件 
 现值和当期值汉密尔顿函数 
 多个变量 
 
动态规划导论(KD，pp.145-159；AD，pp.28-33) 
 贝尔曼方程 
  



CHAPTER 1 SETS AND MAPPINGS

1. Convex Set
S ⊂ n is a convex set if for all x2 ∈ S, we have

tX1  1 − tx2 ∈ S
for all t ∈ 0, 1.
Convex set: the Intersection of Convex Sets is Convex

2.Open and Closed  −Balls
Open  −Ball with center x0 and radius   0 is the subset of points in

n,
Bx0  x ∈ n|dx0, x  

Closed  −Ball with center x0 and radius   0 is the subset of points in
n,

B
∗x0  x ∈ n|dx0, x ≤ 

Open set: S ⊂ n is an open set if, for all x ∈ S, there exists some
∈ 0 such that Bx ⊂ S.

Close set: S is closed set if its complements SC is an open set.

Open sets:
The empty set, ∅, is an open set.
The entire space, n, is an open set.
The union of open sets is an open set.
The intersection of any finite number of open sets is an open set.

Every Open Set is a Colletion of Open Balls:
Let S be an open set. For every x ∈ S, choose some x  0 such that

Bxx ⊂ S. Then,
S  x∈S Bxx.

Closed Sets:
The empty set, ∅, is a closed set.
The entire space, n, is a closed set.
The union of any finite collection of closed sets is a closed set.
The intersection of closed sets is a close set.

3.Separating Hyperplanes
Given p ∈ n with p ≠ 0, and c ∈ , the hyperplane generated by p



and c is set Hp,c  z ∈ n|p  z  c. The sets z ∈ n|p  z ≥ c and
z ∈ n|p  z ≤ c are called, respectively, the half-space above and the
half-space below the hyperplane Hp,c.

Separating Hyperplane Theorem:
Suppose that B ⊂ n is convex and closed, and that x ∉ B. Then there

is p ∈ n with p ≠ 0, and a value c ∈  such that p  x  c and
p  y  c for every y ∈ B.

More generally, suppose that the convex sets A, B ⊂ n are disjoint (i.e.,
A ∩ B  ∅). Then there is p ∈ n with p ≠ 0, and a value c ∈ , such
that p  x ≥ c for every x ∈ A and p  y ≤ c for every y ∈ B. That is,
there is a hyperplane that separates A and B, leaving A and B on different
sides of it.

Supporting Hyperplane Theorem:
Suppose that B ⊂ n is convex and that x is not an element of the

interior of set B (i.e., x ∉Int B). Then there is p ∈ n with p ≠ 0 such that
p  x ≥ p  y for every y ∈ B.

4.Bounded sets
Bounded sets: S is bounded if there exists some   0 such that

S ⊂ Bx for some x ∈ n.
Lower bound: any real number l for which l ≤ x for all x ∈ S is called

a lower bound for S.
Upper bound: any real number u for which x ≤ u for all x ∈ S is called

an upper bound for S.
S ⊂  is bounded from below if it has a lover bound, and is bounded

from above if it has an upper bound.
The largest number among the lower bounds is called the greatest lower

bound (g. l. b. ) of S.
The smallest number among the upper bounds is called the least upper

bound (l. u. b. ) of S.

Upper and Lower Bounds in Subsets of Real Numbers:
1. Let S be a bounded open set in  and let a be the g. l. b. of S and b

be the l. u. b. of S. Then a ∉ S and b ∉ S.
2. Let S be a bounded closed set in  and let a be the g. l. b. of S and

S and b be the l. u. b. of S. Then a ∈ S and b ∈ S.

(Heine-Borel) Compact sets: a set S in n is called compact if it is closed
and bounded.



5. (Cauchy) Continuity
Let D be a subset of n, and let f : D → n. The function f is

continuous at the point x0 ∈ D if for every   0, there is a   0 such
that

fBx0 ∩ D ⊂ Bfx0.
If f is continuous at every point x ∈ D, then it is called a continuous

function.

Open sets in D : Let D be a subset of n. Then a subset S of D is
open in D if for every x ∈ S there is an   0 such that Bx ∩ D ⊂ S.

Closed sets in D : Let D be a subset of m. A subset S of D is closed
in D if its complement in D is open in D.

Continuity and Inverse Images:
Let D be a subset of m. The following conditions are equivalent:
1. f : D → n is continuous.
2. For every open ball B in n, f−1B is open in D.
3. For every open set S in n, f−1S is open in D.

Theorem The Continuous Image of a Compact Set is a Compact Set
Let D be a subset of m and let f : D → n be continuous function. If

S ⊂ D is compact in D, then its image fS ⊂ n is compact in n.

6. Sequence
Sequences in n : A sequence of n is function mapping some infinite

subset I of positive integers into n. We shall denote a sequence by xk}k∈I,
where xk ∈ n for every k ∈ I.

Convergent sequences: The sequence xkk∈I converges to x ∈ n if for

every   0, there is a k such that xk ∈ Bx for all k ∈ I exceeding k .
Bounded sequences: A sequence xk}k∈Iin n is bounded if for some

M ∈ , ||xk||≤ M for all k ∈ I.
Subsequences: xk}k∈Jis a subsequence of the sequence xk}k∈Iin n, if J

is an infinite subset of I.

Bounded sequences:
Every bounded sequence in n has a convergent subsequence.



Sequence, Sets, and Continuous Functions:
Let D be subset of n, and let f : D → m. Then
1. D is open if and only if for each x ∈ D, if xkk1

 converges to x, then
for some k , xk ∈ D for all k ≥ k .

2. D is closed if and only if for every xkk1
 of points in D converging to

some x ∈ n, it is also the case that x ∈ D.
3. f is continuous if and only if whenever xkk1

 in D converges to
x ∈ D, fxkk1

 converges to fx.

7. Some Existing Theorems
(Weierstrass) Existence of Extreme Values:
Let f : S →  be a continuous real-valued mapping where S is a

nonempty compact subset of n. Then these exists a vector x∗ ∈ S such
that

fx ≤ fx ≤ fx∗ for all x ∈ S.

The Brouwer Fixed-Point Theorem:
Let S ⊂ n be a nonempty compact and convex set. Let f : S → S be

continuous mapping. Then there exists at least one fixed point of f in S. That
is, thers exists at least one x∗ ∈ S such that x∗  fx∗.

8. Real-Valued Functions
Real-valued function: f : D → R is a real-valued function fi D is any set

and R ⊂ .

Increasing, Strictly Increasing and Strongly Increasing Functions:
Let f : D → , where D is subset of n.
f is increasing if fx0 ≥ fx1 whenever x0 ≥ x1.
f is strictly increasing if fx0  fx1 whenever x0  x1.
f is strongly increasing if fx0  fx1 whenever x0 ≠ x1 and x0 ≥ x1.

Decreasing, Strictly Decreasing and Strongly Decreasing Functions:
Let f : D → , where D is subset of n.
f is decreasing if fx0 ≤ fx1 whenever x0 ≥ x1.
f is strictly decreasing if fx0  fx1 whenever x0  x1.
f is strongly decreasing if fx0  fx1 whenever x0 ≠ x1 and x0 ≥ x1.

9.Related sets
Level sets: Ly0 is a level set of the real-valued function f : D → R iff

Ly0  x|x ∈ D, fx  y0, where y0 ∈ R ⊂ .



Level sets relative to a point: ℒx0 is a level set relative to x0 if
ℒx0  x|x ∈ D, fx  fx0.

Superior set: Sy0 ≡ x|x ∈ D, fx ≥ y0 is called the superior set for
level y0.

Inferior set: Iy0 ≡ x|x ∈ D, fx ≤ y0 is called the inferior set for level
y0.

Strictly superior set: S′y0 ≡ x|x ∈ D, fx′  y0 is called the strictly
superior set for level y0.

Strictly inferior set: I′y0 ≡ x|x ∈ D, fx  y0 is called the strictly
inferior set for level y0.

Superior, Inferior, and Level Sets:
For any f : D → R and y0 ∈ R :
1. Ly0 ⊂ Sy0.
2. Ly0 ⊂ Iy0.
3. Ly0  Sy0 ∩ Iy0.
4. S′y0 ⊂ Sy0.
5. I′y0 ∩ Ly0  ∅.
6. S′y0 ∩ Ly0  ∅.
7. I′y0 ∩ Ly0  ∅.

8. S′y0 ∩ I′y0  ∅.

10. Concave Functions
Assumption:
(1) D ⊂ n is a convex set.
(2) When x1 ∈ D and x2 ∈ D, xt  tx1  1 − tx2, for t ∈ 0, 1,

denote the convex combination of x1 and x2.

Concave function: f : D → R is a concave function if for all x1, x2 ∈ D,
fxt ≥ tfx1  1 − tfx2 ∀t ∈ 0, 1

Theorem Points on and below the graph of a concave function is
always form a convex set

Let A ≡ x, y|x ∈ D, fx ≥ y be the set of points "on and below"
the graph of f : D → R, where D ⊂ , Then,

f is a concave function  A is a convex set.

Strictly concave function: f : D → R is a strictly concave function iff, for
all x1 ≠ x2 in D,

fxt  tfx1  1 − tfx2 for all t ∈ 0, 1



Quasiconcave function: f : D → R is quasiconcave iff, for all x1 and x2

in D,
fxt ≥ minfx1, fx2 for all t ∈ 0, 1

Quasiconcavity and the superior sets
f : D → R is a quasiconcave function iff Sy is a convex set for all

y ∈ .

Strictly quasiconcave function: A function f : D → R is strictly
quasiconcave iff, for all x1 ≠ x2 in D, fxt  minfx1, fx2 for all
t ∈ 0, 1.

Concavity implies quasiconcavity:
A concave function is always quasiconcave.
A strictly concave functions is always strictly quasiconcave.

11. Convex and quasiconvex functions
Convex function: f : D → R is a convex function iff, for all x1, x2 in D,

fxt ≤ tfx1  1 − tfx2 for all t ∈ 0, 1.
Strictly convex function: f : D → R is a strictly convex function iff, for all

x1 ≠ x2 in D,
fxt  tfx1  1 − tfx2 for all t ∈ 0, 1.

Concave and convex functions:
fx is a (strictly) concave function  −fx is a (strictly) convex function.

Points on and above the graph of a convex function always form a
convex set:

Let A∗ ≡ x, y|x ∈ D, fx ≤ y be the set of points "on and above"
the graph of f : D → R, where D ⊂ n is a convex set and R ⊂ .
Then

f is a convex function  A∗ is a convex set.

Quasiconvex function: f : D → R is
quasiconvex ∀x1, x2 ∈ D, fxt ≤ maxfx1, fx2

Strictly quasiconvex function: f : D → R is strictly
quasiconvex ∀x1, x2 ∈ D, fxt  maxfx1, fx2



Quasiconvexity and the inferior sets:
f : D → R is quasiconvex function Iy is a convex set for all y ∈ .

Quasiconcave and quasiconvex functions:
fx is a (strictly) quasiconcave function  −fx is a (strictly) quasiconvex

function.

Remark
f is concave  the set of points beneath the graph is convex
f is convex  the set of points above the graph is convex
f quasiconcave  superior sets are convex sets
f quasiconvex inferior sets are convex sets
f concave  f quasiconcave
f convex  f quasiconvex
f (strictly) concave  −f (strictly) convex
f (strictly) quasiconcave  −f (strictly) quasiconvex



CHAPTER 2 CALCULUS

Functions of a Single Variable
Chain Rule: d

dx fgx  f′gxg′x

Concavity and first and second derivatives:
Let D be a nondegenerate interval of real numbers on which f is twice

continuously differentiable. The following statements 1 to 3 are equivalent:
1. f is concave.
2. f′′x ≤ 0 ∀x ∈ D.
3. ∀x0 ∈ D : fx ≤ fx0  f′x0x − x0 ∀x ∈ D.
Moreover,
4. f′′x  0 ∀x ∈ D  f is strictly concave.

Functions of Several Variables
Directional derivative:

∀x, z ∈ , gt  fx  tz  g′0  ∑
i1

n

fixzi

The term on the right-hand side is known as the directional derivative of f
at x in the direction z.

Gradient: ∇fx ≡ f1x, …, fnx is called the gradient of f at x.
Remark g′0  ∇fxz.

Second-order partial derivative:
∂
∂xi

 ∂fx∂x1
 ≡ ∂2fx

∂xi∂x1
≡ f1ix

Second-order gradient vector: the gradient of the partial with respect to
x1, f1x.

∇f1x   ∂
2fx
∂x1∂x1

, …, ∂
2fx
∂xn∂x1

 ≡ f11x, …, f1nx

Hessian matrix:

Hx 

f11x f12x … f1nx
f21x f22x … f2nx
   

fn1x fn2x … fnnx



Young’s Theorem:
For any twice continuously differentiable function fx,

∂2fx
∂xi∂xj

 ∂2fx
∂xj∂xi

∀i and j.

Single-Variable and Multivariable Concavity:
f is a real-value function defined on the convex subset D of n. f is

(strictly) concave  ∀x ∈ D, ∀nonzero z ∈ n, gt  fx  tz is (strictly)
concave on t ∈ |x  tz ∈ D

Negative semidefinite matrix:
A is negative semidefinite  ∀z ∈ n, zTAz ≤ 0.
A is negative definite  ∀z ∈ n, zTAz  0.
A is positive semidefinite  ∀z ∈ n, zTAz ≥ 0.
A is positive definite  ∀z ∈ n, zTAz  0.

Slope,curvature, and concavity in many variables
Let D be a convex subset of n with a nonempty interior on which f is

twice continuously differentiable. The following statements 1 to 3 are
equivalent:

1. f is concave.
2. Hx is negative semidefinite for all x in D.
3. For ∀x0 ∈ D : fx ≤ fx0  ∇fx0x − x0 ∀x ∈ D.
Moreover,
4. If Hx is negative definite for all x in D, then f is strictly concave.

Concavity, convexity, and second-order own partial derivatives
Let f : D → R be a twice diffentiable function.
1. f is concave  ∀x, fiix ≤ 0, i  1, …, n.
2. f is convex  ∀x, fiix ≥ 0, i  1, …, n.

Homogeneous Functions
Homogeneous function: A real-valued function fx is homogeneous of

degree k  ftx ≡ tkfx, ∀t  0.
fx is homogeneous of degree 1, or linear

homogeneous ftx ≡ tfx, ∀t  0.
fx is homogeneous of degree zero ftx ≡ fx, ∀t  0.



Partial derivatives of homogeneous functions
If fx is homogeneous of degree k, its partial deriatives are homogeneous

of degree k − 1.

Euler’s theorem (or adding-up theorem)
fx is homogeneous of degree k  ∀x, kfx  ∑i1

n ∂fx
∂xi

xi

Some Useful Results in Calculus (BS)
Implicit function theorem
Taylor’s theorem



CHAPTER 3 STATIC OPTIMIZATION

Unconstrained Optimization
Necessary conditions for local interior optima in the single-variable case
Let fx be a twice continuously differentiable function of one variable.

Then fx reaches a local interior
1. maximum at x∗  f′x∗  0 (FONC),

 f′′x∗ ≤ 0 (SONC).
2. minimum at x  f′x  0 (FONC)

 f′′x ≥ 0 (SONC).

FONC for local interior optima of real-valued functions:
fx reaches a local interior maximum or minimum at x∗  ∇fx∗  0

SONC for local interior optima of real-valued functions:
Let fx be a twice continuously differentiable.

fx reaches a local interior maximum at x∗  Hx∗ is negative semidefinite

fx reaches a local interior maximum at x  Hx is positive semidefinite
Sufficient condition for negative and positive definiteness of the Hessian:
Let fx be twice continuously differentiable, and let Dix be the ith-order

principal minor of the Hessian matrix Hx.
1. −1iDix  0, i  1, …, n  Hx is negative definite.
2. Dix  0, i  1, …, n  Hx is positive definite.
If condition 1 holds for all x in the domain, then f is strictly concave.
If condition 2 holds for all x in the domain, then f is strictly convex.

Sufficient conditions for local interior optima of real-valued functions
Let fx be twice continuously differentiable.
1. fix∗  0 and −1nDix∗  0, i  1, …, n  fx reaches a local

maximum at x∗.
2. fi

x  0 and Dix∗  0, i  1, …, n  fx reaches a local
minimum at x .

(Unconstrained) local-global theorem:
Let f be a twice continuously differentiable real-valued concave function on

D. The following statements are equivalent, where x∗ is an interior point of
D :

1. ∇fx∗  0.



2. f achieves a local maximum at x∗.
3. f achieves a global maximum at x∗.

Stict concavity/convexity and the uniqueness of global optima:
1. x∗ maximizes the strictly concave function f  x∗ is the unique global

maximizer, i.e., fx∗  fx ∀x ∈ D, x ≠ x∗.
2. x minimizes the strictly convex function f  x is the unique global

minimizer, i.e., fx  fx ∀x ∈ D, x ≠ x .

Sufficient condition for unique global optima:
Let fx be twice continuously differentiable.
1. fx is strictly concave and fix∗  0, i  1, …, n  x∗ is the unique

global maximizer of fx.
2. fx is strictly convex and fi

x  0, i  1, …, n  x is the unique
global maximizer of fx.
Constrained Optimization

Equality constraints

Two-variable, one constraint optimization problem:

maxx1,x2
fx1, x2 s. t. gx1, x2  0

Lagrange’s method

1.Lagarangian function:
ℒx1, x2,  ≡ fx1, x2  gx1, x2

2.F.O.C
∂ℒ
∂x1

 ∂fx1
∗, x2

∗
∂x1

 ∗ ∂gx1
∗, x2

∗
∂x1

 0

∂ℒ
∂x2

 ∂fx1
∗, x2

∗
∂x2

 ∗ ∂gx1
∗, x2

∗
∂x2

 0

∂ℒ
∂  gx1

∗, x2
∗  0.

The first-order partials fo the Lagrangian function with respect to the xi

were
ℒi  fi  gi.

The second-order partials of ℒ would then be



ℒ11  f11  g11

ℒ12  f12  g12

ℒ22  f22  g22.
Bordered Hessian of the Lagrangian function

H ≡
0 g1 g2

g1 ℒ11 ℒ12

g2 ℒ21 ℒ22

Sufficient condition for a local optimum:

D ≡ |H| 0 0  x1
∗, x2

∗ is a local maximum (minimum)

n-variable, m-constraint optimization problem:

Lagrange’s theorem:
Let fx and gjx, j  1, …, m, be continuously differentiable real-valued

functions over some domain D ⊂ n. Let x∗ be an interior point of D and
suppose that x∗ is an optimum of f subject to the constraints, gjx∗  0. If
∇gjx∗ are linearly independent, then there exist m unique numbers j

∗, such
that

∂ℒx∗, ∧∗ 
∂xi

 ∂fx∗
∂xi

 ∑
j1

m

j
∗ ∂gjx∗
∂xi

 0

Bordered Hessian matrix

H 

0  0 g1
1 … gn

1

     
0 … 0 g1

m … gn
m

g1
1 … g1

m ℒ11 … ℒ1n

     
gn

1 … gn
m ℒn1 … ℒnn

Sufficient conditions for local optima with equality constraints:
Let the objective function be fx and the m  n constraints be

gjx  0, j  1, …, m.
1. x∗ is a local maximum of fx s.t. the constraints if the n − m principal

minors in D  |H| alternate in sign beginning with positive



Dm1  0, Dm2  0, …, when evaluated at x∗, ∧∗ .
2. x∗ is a local minimum of fx s.t. the constraints if the n − m principal

minors in D  |H| are all negative Dm1  0, Dm2  0, …, when evaluated
at x∗, ∧∗ .

Necessary conditions for optima of real-valued functions subject to
nonnegativity constraints

Let fx be continuously differentiable.
1. If x∗ maximizes fx subject to x ≥ 0, then x∗ satisfies

i. ∂fx∗
∂xi

≤ 0, i  1, …, n

ii. xi
∗ ∂fx

∗
∂xi

  0, i  1, …, n

iii. xi
∗ ≥ 0, i  1, …, n.

2. If x∗ minimizes fx subject to x ≥ 0, then x∗ satisfies

i. ∂fx∗
∂xi

≥ 0, i  1, …, n

ii. xi
∗ ∂fx

∗
∂xi

  0, i  1, …, n

iii. xi
∗ ≥ 0, i  1, …, n.

Inequality constraints

A two-variable nonlinear programming programming
maxx1,x2

fx1, x2

s. t. gx1, x2 ≥ 0.
Equivalent to the three-variable problem with equality and nonnegativity

constraints:
maxx1,x2,z fx1, x2

s. t. gx1, x2 − z  0
z ≥ 0.

Lagrangian function:
ℒx1, x2, z,  ≡ fx1, x2  gx1, x2 − z

Kuhn-Tucker conditions:
ℒ1  f1  g1  0
ℒ2  f2  g2  0

gx1, x2  0
 ≥ 0, gx1, x2 ≥ 0



(Kuhn-Tucker) Necessary conditions for optima of real-valued functions
subject to inequality constraints

Let fx and gjx, j  1, …, m, be continuously diffentiable real-valued
functions over some domain D ⊂ n. Let x∗ be an interior point of D and
suppose that x∗ is an optimum of f subject to the constraints,
gjx∗ ≥ 0, j  1, …, m.

If ∇gjx∗ associated with all binding constraints are linearly independent,
then there exists a unique vector ∧∗such that x∗, ∧∗  satisfies the
Kuhn-Tucker conditions:

∂ℒx∗, ∧∗ 
∂xi

≡ ∂fx∗
∂xi

 ∑
j1

m

j
∗ ∂gjx∗

∂xi
 0, i  1, …, n

j
∗gjx∗  0 gjx∗ ≥ 0 j  1, …, m.

Furthermore, the vector ∧∗ is nonnegative if x∗ is a maximum, and
nonpostitive if it is a minimum.

Value Functions

Envelop Theorem:
Consider the optimization problem (P1):

maxx fx, a

s.t. gx, a  0
x ≥ 0.

suppose the objective function and constraint are continuously
differentiable in a, let xa  0 uniquely solve P1 and assume that it is also
continuously differentiable in the parameters a. Let ℒx, a,  be the problem’s
associated Lagrangian function and let xa, a solve the Kuhn-Tucker
conditions. Finally, let Ma be the problem’s associated maximum-value
function. Then,

∂Ma
∂aj

 ∂ℒ
∂aj xa,a

j  1, …, m.

where the right-hand side denotes the partial derivative of the Lagrangian
function with respect to the parameter aj evaluated at the point xa, a.



CHAPTER 4 Differential Equations
INTRODUCTION

A differential equation is an equation that involves derivatives of variables.
If there is only one independent variablce, then it is called an ordinary

differential equation (ODE).
If the highest derivative is an ODE is of order n, then it is an nth-order

ODE.
When the functional form of the equation is linear, then it is a linear ODE.
Example: A first-order linear ODE

a1  ẏt  a2  yt  xt  0

where ẏt ≡ dyt
dt

xt : forcing function
If xt  a3, then the equation is called autonomous.
If xt  0, then the equation is called homogeneous.

Solution methods
1.Graphical

 Used for nonlinear, as well as linear, differential equations;
 Used only for autonomous equations.

2.Analytical
 Used only with a limited set of functional forms.

3.Numerical analysis
 e.g. Matlab has the subroutines ODE23 and ODE45, and
Mathematica has the command NDSOLVE.

First-order ODE
Graphical solutions

 1. Consider an automoumous ODE of the form,
ẏt  fyt

 Example 1
ẏt  fyt  a  yt − x

- Case 1, a  0



 Case 2, a  0

 - Example 2
ẏt  fyt  s  yt −   yt

s, ,   0;   1

Definition: Stability
 - If ∂ẏ

∂y y∗
 0, then y is locally unstable,

- If ∂ẏ
∂y y∗

 0, then y is locally stable.

Analytical Solutions
 The solution to ẏt  a is obviously yt  b  at, where b is
an arbitrary constant.



 Equations that involve polynomial functions of time
ẏt  a0  a1t  a2  t2 . . . an  tn

- has the solution
yt  b  a0t  a1   t2

2  . . . an   tn1

n  1 

 The general solution for linear, first-order ODEs
- Linear, first-order differential equations with constant

coefficients.
ẏt  a  yt  xt  0

1  ẏt  a  yt  −xt

2   eatẏt  a  ytdt  −  eat  xtdt

The term eat is called the integrating factor. The reason for
multiplying by the integrating factor is that the term inside the
left-hand side integral becomes the deriative of eat  yt with respect
to time:

eat  ẏt  a  yt  d
dt e

at  yt  b0

 - Hence, the term on the left-hand side of Eq.(2)
equals eat  yt  b0.
3 Compute the integral on the right-hand side of Eq.(2).

Call the result INTt  b1

4 Mutiply both sides by e−at to get yt :
yt  −e−at  INTt  be−at

where b  b1 − b0 is an arbitrary constant.
Problem Sets

 Ex.1 Show the general solution to ẏt − yt − 1  0
[Answer: yt  −1  bet]
 Ex.2 Suppose k̇t  kt − k∗ and k0 is the initial value of
kt, show that kt  k∗  e−tk0 − k∗. (Romer, 2001, p.24)

Linear, first-order differential equations with variable coefficients.
ẏt  at  yt  xt  0

 The integrating factor is now e0
t

ad
, so that the left-hand side

becomes the derivative of yt  e0
t

ad
.

 We find that the solution to the ODE is

yt  −e
−

0

t
ad

  e0
t

ad
 xt  dt  b  e

−
0

t
ad

,

- Where b is an arbitrary constant of integration.

Systems of Linear ODE
A system of linear, first-order ODEs of the form



ẏ1t  a11  y1t . . . a1n  ynt  x1t,
. . .

ẏnt  an1y1t . . . annynt  xnt.
In matrix notation, the system is

ẏt  A  yt  xt,

Where yt 
y1t


ynt

ẏt 
ẏ1t


ẏnt
A is an n  n square matrix of constant coefficients
xt is a vector of n functions.

Solutions Methods
 Phase diagram
 Analytical
 Numerical

Phase Diagram
 Diagonal systems: A simple case

ẏ1t  a11  y1t,
ẏ2t  a22  y2t,

 where a11 and a22 are real numbers.
Case 1, a11  0 and a22  0 : An unstable system

 - Step One

 Step Two



 Step Three

 Step Four, use the boundary conditions to see which one of the
many paths depicted in the picture constitutes the exact solution.

Case 2, a11  0 and a22  0 : A stable system

Case 3, a11  0 and a22  0 : A saddle-path stability.



A nondiagonal example [see BS, p.476)]\



CHAPTER 5 Dynamic Optimization

Dynamic Control

Typical Problem

max
ct

V0  
0

T
vkt, ct, tdt

s. t. k̇t  gkt, ct, t (1)
k0  k0  0 (2)
kT  e−rTT  0 (3)

where V0 −objective function as seen from the initial moment;
rt −average discount rate
T −terminal planning date, finite or infinite

kt −state variable
ct −control variable
v∙ −instantaneous felicity functions
Eq.(1): transition equation or equation of motion
Eq.(2): the initial condition
Eq.(3): the final constraint

- For finite values of T, this constraint implies kT  0, as
long as the discount rate rT is positive and finite. If kt
represents a person’s net assets and T is the person’s
lifetime, then the constraint in Eq.(3) precludes dying in debt.

- If the planning horizon is infinite, then the condition says that
net assets can be negative and grow forever in magnitude, as
long as the rate of growth is less than rt. This constraint
rules out chain letters or Ponzi schemes for debt.

- Example
vk, c, t  e−t  uct
k̇  gkt, ct, t  fkt, t − ct −   kt

Procedure to Find the First-Order Conditions

1. Hamiltonian function:
H  vk, c, t  t  gk, c, t.

2. Take the derivative of the Hamiltonian with respect to the control
variable and set it to 0:

∂H
∂c  ∂v

∂c    ∂g
∂c  0.

3. Take the derivative of the Hamiltonian with respect to the state



variable and set it to equal the negative of the derivative of the
multiplier with respect to time:

∂H
∂k ≡ ∂v

∂k    ∂g
∂k  −̇.

4. Step four (transversality condition):
 Case 1: Finite horizons. Set the product of the shadow price and
the capital stock at the end of the planning horizon to 0:

T  kT  0
 Case 2: Infinite horizons with discounting.

lim
t→
t  kt  0.

 Case 3: Infinite horizons without discounting. In this case, we use
Michel’s condition,

lim
t→
Ht  0

Present-Value and Current-Value Hamiltonians
 Most of the models that we deal with have an objective function
of the form,


0

T
vkt, ct, t  dt  

0

T
e−t  ukt, ct  dt

 Constructiong the Hamiltonian
H  e−t  uk, c    gk, c, t.

The shadow price t represents the value of the capital stock
at time t in units of time-zero utils.
 Rewrite the Hamiltonian as

H  e−t  uk, c  qt  gk, c, t,
where qt ≡ t  et. The variable qt is the current-value

shadow price.
 Define

∧
H H  et to be the current-value Hamiltonian:

∧
H≡ uk, c  qt  gk, c, t.

 The first-order conditions can be expressed as

4
∧
Hc  0,

5
∧

Hk q − q̇.
 The transversality condition can be expressed as

qT  e−T  kT  0.

Multiple Variables
 A general dynamic problem:



max
c1t,…,cnt


0

T
uk1t, . . . , kmt; c1t, . . . , cnt; t  dt

s. t. k̇1t  g1k1t, . . . , km1; c1t, . . . , cnt; t
k̇2t  g2k1t, . . . , km1; c1t, . . . , cnt; t
. . .
k̇mt  gmk1t, . . . , km1; c1t, . . . , cnt; t
k10  0, . . . , km0  0, given
k1T ≥ 0, . . . , kmT ≥ 0, free

 The Hamiltonian is

H  uk1t, . . . , kmt; c1t, . . . , cnt; t  ∑
i1

m

i  gi.

 FONC
∂H
∂cit

 0, i  1, . . . , n,

∂H
∂kit

 −̇i, i  1, . . . , m,

The transversality conditions are
it  kiT  0, i  1, . . . , m.

Dynamic Programming: An Introduction

Example: An optimal growth problem

max
ct,kt

Ut  ∑
t0



tuct

s. t. ct  kt1  fkt

Where ut −instantaneos utility, which is an increasing, concave
function of current consumption

t −individual’s subjective discount factor, t ∈ 0, 1
ct −current consumption
kt1 −capital to be carried over to the following period

ct  kt1  fkt

where ct − current consumption
kt1 − capital to be carried over to the following period

Value function
 The value function represents the fact that the maximum present



discounted value of the objective function from a point in time
onward can be expressed as a function of the state variables at
that date.
 Since the state variables at a point in time fully determine all
other variables both currently and (via the transition equations) at all
future dates, including those which enter the objective function, they
determine the maximum attainable value of the objective function.
 Example:

tk 1tk + 2tk +

tc 1tc +

( )tu c 1( )tu c +

- The state variable kt determines kt1, which determines kt2,
et cetera.

- kt therefore determines the utility-maximizing value of
ct, ct1, ct2, et cetera, and this maximum attainable value is
simply Vkt.

- Therefore

Vkt  max
ct,kt

Ut  ∑
t0



tuct

Bellman equation
1. In any period t, where the planner begins with kt, the choice

between ct and kt1 can be represented as maximizing
uct  Vkt1

2. Combining two observations, we have
Vkt  max

kt1
ufkt − kt1  Vkt1 (eq.4)

This is the Bellman equation, whose solution is a function V.

What lies behind the Bellman equation?
1. The value function allows a nontrivial dynamic problem to be

turned into a simple-looking single-period optimization.

2. Dynamic problems are two-period problems balancing "today"
against "the infinite future", but this works only when there is
consistency between how one treated the future yesterday and how
one treats it today.

Methods of solution



1. Method of conjecture.

2. Method of successive approximations.

The most useful method via the Bellman equation is not to solve for the
value function V at all, but to derive the optimal path without finding V
itself. Differentiability of V allows us to do this in many cases.

With smooth functions and interior solutions, marginal changes in the state
variable k imply marginal changes in attainable welfare in the same direction.

With differentiability of V, the maximum problem in (eq.4) yields the
following first-order condition for kt1 :

u′fkt − kt1  V′kt1 (eq.5)
Straightforward interpretation: choose kt1 so that the loss in utility from

"one less unit" of consumption today is just equal to the (discounted) gain in
future "one more unit" of capital carried over (i.e. "saving") would allow.

What is the utility gain from higher kt1?
This can be calculated by use of the envelope theorem applied to V to

find the derivative V′, namely,
u′fkt − kt1  u′fkt − kt1f′kt (eq.6)

Straightforward interpretation: the value of another unit of
beginning-of-period capital along an optimal path is the marginal utility value
of the extra product the higher capital allows evaluated at the optimal level of
consumption.

Combining (eq.5) and (eq.6), one obtains
u′fkt − kt1  u′fkt1 − kt1f′kt1 (eq.7)

where kt1 ≡ kt2.

Hence the time-invariant function  giving the optimal level of the control
variable as a funtion of the state, sometimes called the policy function, which
characterize the optimal path.

For many functional forms of u and f, it is easy to solve (eq.7) to
obtain a closed form for .

More generally, we can analyze this equation to obtain certain
characteristics of  and hence the optimal path.


