科学研究

科学研究

学术讲座
当前位置是: 首页 -> 科学研究 -> 学术讲座 -> 正文

Integrated Conditional Moment Test and Beyond: When the Number of Covariates is Divergent

作者: 发布时间:2021-04-22 点击数:
主讲人:朱力行
主讲人简介:
朱力行,北京师范大学京师特聘教授,香港浸会大学统计学首席教授,国家杰出青年科学基金获得者,中科院入选者,国家人事部“百千万人才工程”入选者,美国科学促进会(AAAS)fellow,美国数理统计研究院fellow, 美国统计协会fellow,中国国家自然科学奖二等奖独立获奖人,国际华人统计学界第一位德国洪堡研究奖得主,亚洲统计学界唯一获奖者。他在高维数据分析、统计学中的Monte Carlo方法、非参数/半参数统计、经验过程理论、生物统计与生物信息论、经济计量学等研究领域取得一些重要成果。
 
主持人:李迎星
讲座简介:

The classic integrated conditional moment (ICM) test is a promising method for model check- 10 ing and its basic idea has been applied to develop several variants. However, in diverging dimension scenarios, the ICM test may break down and has completely different limiting properties from those in fixed dimension cases, and the related wild bootstrap approximation would also be invalid. To extend the ICM test to diverging dimension settings, we propose a projected adaptiveto-model version of the ICM test. We study the asymptotic properties of the new test under both 15 the null and alternative hypotheses to examine its ability of significance level maintenance and its sensitivity to the global and local alternatives that are distinct from the null at the rate n −1/2 . The corresponding wild bootstrap approximation can still work in diverging dimension scenarios. We also derive the consistency and asymptotically linear representation of the least squares estimator of the parameter at the fastest rate of divergence in the literature for nonlinear models. 20 The numerical studies show that the new test can greatly enhance the performance of the ICM test in high-dimensional cases. We also apply the test to a real data set for illustration.

时间:2021-04-22(Thursday)16:40-18:00
地点:经济楼D235
讲座语言:中文
主办单位:永利集团3044官网欢迎您、王亚南经济研究院
承办单位:
期数:
联系人信息:
TOP