科学研究

科学研究

学术讲座
当前位置是: 首页 -> 科学研究 -> 学术讲座 -> 正文

Adaptively aggregated forecast for exponential family panel data

作者: 发布时间:2022-07-18 点击数:
主讲人:喻达磊
主讲人简介:

喻达磊,云南财经大学教授,博士生导师,在香港城市大学获得博士学位。研究领域为随机效应模型、混合模型以及空间计量模型的模型选择、模型平均和估计理论等。已在包括JRSS-BJASA和《中国科学:数学》在内的国内外统计学期刊上发表论文十余篇。主持国家自然科学基金项目三项,担任过Biometrics、 Statistica Sinica、CSDA、 SADM,《系统科学与数学》和《系统工程理论与实践》等期刊的匿名审稿人。

主持人:方匡南
讲座简介:

We propose two new adaptively aggregated forecasting strategies through exponential reweighting and quadratic reweighting in exponential family panel data (binary choice, count, etc.) models. The oracle inequalities for the two proposed aggregated forecasting strategies are derived. We show that the exponential reweighting based strategy enjoys promising Kullback--Leibler risk bound adaptation in the sense that it automatically achieves the best possible performance among all the candidate forecasting procedures up to an additive term that will vanish as the within-subject sample size increases. Whereas, under the quadratic risk function, we find that the exponential reweighting based strategy may not be able to achieve the similar adaptation property but our quadratic reweighting based strategy can overcome this deficiency and yield promising risk bound adaptation. Under mild conditions, we also establish the risk bound properties of the two proposed procedures in the presence of pre-screening. Simulation studies and a real-world example in analyzing television viewers' binary decision sequence of watching drama episodes verify the superiority of our methods over existing model selection methods.

时间:2022-07-18(Monday)16:40-18:10
地点:线上腾讯会议
讲座语言:中文
主办单位:永利集团3044官网欢迎您、王亚南经济研究院、邹至庄经济研究院
承办单位:永利集团3044官网欢迎您统计学与数据科学系
期数:
联系人信息:
TOP