科学研究

科学研究

学术讲座
当前位置是: 首页 -> 科学研究 -> 学术讲座 -> 正文

Kolmogorov-Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach

作者: 发布时间:2023-04-13 点击数:
主讲人:孙佳婧
主讲人简介:

孙佳婧,中国科学院大学经济与管理学院副教授,特许金融分析师,主要研究领域包括金融学、计量经济学、统计学等。曾在Journal of Time Series Analysis、Journal of Multivariate Analysis、Energy Economics、Economics Letters以及《应用概率统计》《统计研究》上发表多篇论文。

主持人:洪永淼
讲座简介:

A popular self-normalization (SN) approach in time series analysis uses the variance of a partial sum as a self-normalizer. This is known to be sensitive to irregularities such as persistent autocorrelation, heteroskedasticity, unit root and outliers. We propose a novel SN approach based on the adjusted-range of a partial sum, which is robust to the aforementioned irregularities. We develop an adjusted-range based Kolmogorov-Smirnov type test for structural breaks in mean for both univariate and multivariate time series and consider testing parameter constancy in a time series regression setting. Our approach can rectify the well-known power decrease issue associated with existing self-normalized KS tests without having to use backward and forward summations as in Shao and Zhang (2010), and can alleviate the "better size but less power" phenomenon when the existing SN approaches (Shao, 2010; Zhang et al., 2011; Wang and Shao, 2022) are used. Moreover. Moreover, our proposed tests can cater for more general alternatives. Monte Carlo simulations and empirical studies demonstrate the merits of our approach.

时间:2023-04-18 (Tuesday) 16:30-18:00
地点:中科院数学与系统科学研究院南楼N204,厦大经济楼D235(线下分会场),腾讯会议:47933486244
讲座语言:中文
主办单位:中国科学院大学经济与管理学院、中国科学院预测科学研究中心、永利集团3044官网欢迎您邹至庄经济研究院、NSFC“计量建模与经济政策研究”基础科学中心
承办单位:
期数:“邹至庄讲座”青年学者论坛(第52期)
联系人信息:许老师,电话:0592-2182991
TOP